EE-463 STATIC POWER CONVERSION-I

Controlled Rectifiers

Ozan Keysan
keysan.me

Office: C-113 • Tel: 2107586

Thyristor Rectifiers

Thyristor Rectifiers

. HVDC Transmission Systems

Thyristor Rectifiers

. HVDC Transmission Systems
. DC Motor Drives

Thyristor Rectifiers

. HVDC Transmission Systems
. DC Motor Drives

- Traction Applications

Thyristor Rectifiers

. HVDC Transmission Systems
. DC Motor Drives

- Traction Applications
- Industrial Loads (Welding, Heating etc)

Thyristor Rectifiers

Thyristor Rectifiers

General Schematic

Thyristor Rectifiers

Thyristor Rectifiers

Operating Quadrants

Capable of supplying negative Vd (Q4, Inversion)

Simple Circuits

Simple Circuits

Thyristor with R load

Can you plot the voltage output?

Simple Circuits

Thyristor with R load

Simple Circuits

Thyristor with RL load

Can you plot the voltage output?

Simple Circuits

Thyristor with RL load

Simple Circuits

Load with DC Source

Can you plot the voltage output?

Load with DC Source

Thyristor with RL load
but let's add a freewheeling diode

Thyristor with RL load

but let's add a freewheeling diode

Thyristor with freewheeling diode

Thyristor with freewheeling diode

Single Phase Thyristor Rectifier

Single Phase Thyristor Rectifier

Single Phase Thyristor Rectifier

Ideal Case

Can you plot the output voltages?

It is identical to diode rectifier with $\alpha=0$

It is identical to diode rectifier with $\alpha=0$

What about with a large firing angle?

What about with a large firing angle?

How can you calculate the average voltage?

How can you calculate the average voltage?

$$
V d_{\alpha}=\frac{2 \sqrt{2} V s}{\pi} \cos (\alpha)
$$

How can you calculate the average voltage?

$$
V d_{\alpha}=\frac{2 \sqrt{2} V s}{\pi} \cos (\alpha)
$$

. $\alpha=0 \rightarrow$ Diode rectifier

How can you calculate the average voltage?

$$
V d_{\alpha}=\frac{2 \sqrt{2} V s}{\pi} \cos (\alpha)
$$

. $\alpha=0 \rightarrow$ Diode rectifier
. $\alpha<\pi / 2 \rightarrow V d>0$

How can you calculate the average voltage?

$$
V d_{\alpha}=\frac{2 \sqrt{2} V s}{\pi} \cos (\alpha)
$$

. $\alpha=0 \rightarrow$ Diode rectifier
. $\alpha<\pi / 2 \rightarrow V d>0$
. $\alpha>\pi / 2 \rightarrow V d<0$

Operating Modes

Power Flow

Power Flow
 $$
P=\frac{1}{T} \int p(t) d t
$$

Power Flow

$$
\begin{aligned}
& P=\frac{1}{T} \int p(t) d t \\
& P=I_{d} \frac{1}{T} \int v_{d}(t) d t=0.9 V_{s} I_{d} \cos (\alpha)
\end{aligned}
$$

Line Current

Shifted by α, but still a square wave

Line Current

Shifted by α, but still a square wave
Harmonics, THD, I1?

Line Current

Shifted by α, but still a square wave
Harmonics, THD, I1?
What about PF, DPF?

Real Power, Apparent Power

Real Power, Apparent Power

MultiSim

Single Phase Rectifier with Resistive Load

Voltage Waveform?

Single Phase Rectifier with Resistive Load

Single Phase Rectifier with Resistive Load

Average Voltage?

Single Phase Rectifier with Resistive Load

$$
V d_{\alpha}=\frac{\sqrt{2} V s}{\pi}(1+\cos (\alpha))
$$

Single Phase Rectifier with R-L Load (Continuous

 Current)

Single Phase Rectifier with R-L Load (Continuous Current)

Single Phase Rectifier with R-L Load (Discontinuous Current)

Single Phase Rectifier with Freewheeling Diode

Single Phase Rectifier with Freewheeling Diode

Can you plot the voltage, current waveform?

Single Phase Rectifier with Freewheeling Diode

Can you plot the voltage, current waveform?
What are the advantages, disadvantages?

How can you make this circuit cheaper?

Full Bridge Half Controlled Rectifier

Full Bridge Half Controlled Rectifier

D1, D2 works as freewheeling diodes

Full Bridge Half Controlled Rectifier

D1, D2 works as freewheeling diodes
Vd cannot be negative

Full Bridge Half Controlled Rectifier

Alternative (Same Output)

D3 can be removed (depending on load, and thyristor gate signals)

Commutation

Commutation

With source side inductance (Ls)

Commutation

With source side inductance (Ls)

Commutation

Commutation

Can you plot the voltage and current outputs?

Commutation

Can you plot the voltage and current outputs?

(a)

Commutation

Effect on the output voltage

Commutation

Effect on the output voltage

$$
A_{u}=\sqrt{2} V_{s}(\cos (\alpha)-\cos (\alpha+u))=2 \omega L_{s} I_{d}
$$

Commutation

Effect on the output voltage

$$
\begin{aligned}
& A_{u}=\sqrt{2} V_{s}(\cos (\alpha)-\cos (\alpha+u))=2 \omega L_{s} I_{d} \\
& \cos (\alpha+u)=\cos (\alpha)-\frac{2 \omega L_{s} I_{d}}{\sqrt{2} V_{s}}
\end{aligned}
$$

Commutation

Voltage drop due to commutation

Commutation

Voltage drop due to commutation
$\Delta V_{d u}=\frac{A_{u}}{\pi}=\frac{2 \omega L_{s} I_{d}}{\pi}$

Commutation

Voltage drop due to commutation

$$
\begin{aligned}
& \Delta V_{d u}=\frac{A_{u}}{\pi}=\frac{2 \omega L_{s} I_{d}}{\pi} \\
& V_{d}=0.9 V_{s} \cos (\alpha)-\frac{2 \omega L_{s} I_{d}}{\pi}
\end{aligned}
$$

Example

Mohan Ex. 6.1

Practical Thyristor Converter

Practical Thyristor Converter

Consider a case as a DC motor drive

Practical Thyristor Converter

Consider a case as a DC motor drive

Practical Thyristor Converter

Continuous Conduction (id is always > 0)

Practical Thyristor Converter

Continuous Conduction (id is always > 0)

Practical Thyristor Converter

Continuous Conduction (id is always > 0)

Average voltage with commutation?

Practical Thyristor Converter

Continuous Conduction (id is always > 0)

Average voltage with commutation?

$$
V_{d} \approx 0.9 V_{s} \cos (\alpha)-\frac{2 \omega L_{s} I_{d, \min }}{\pi}
$$

Practical Thyristor Converter

Continuous Conduction (id is always > 0)

Average Current?

Practical Thyristor Converter

Continuous Conduction (id is always > 0)

Average Current?

$$
I_{d}=\frac{V_{d}-E_{d}}{r_{d}}
$$

Practical Thyristor Converter

What happens ifld is small?

Practical Thyristor Converter

Discontinuous Conduction

Practical Thyristor Converter

Discontinuous Conduction

Inverter Mode

Inverter Mode

$90<$ Firing Angle < 180

Inverter Mode

$90<$ Firing Angle < 180

Average power<0 (Power flows from DC to AC)

Only with active power source on DC side

Inverter Mode

$90<$ Firing Angle < 180

Inverter Mode

Thyristor Voltage

Inverter Mode

Thyristor Voltage

Inverter Mode

Thyristor Voltage

Extinction Angle $(\gamma=180-(\alpha+u))$

Inverter Mode

Thyristor Voltage

Extinction Angle $(\gamma=180-(\alpha+u))$

Extinction time should be larger than thyristor turn-off time $\left(t_{q}\right)$!

You can download this presentation from: keysan.me/ee463.

