EE-464 STATIC POWER CONVERSION-II Magnetic Design for Power Electronics Ozan Keysan <u>keysan.me</u>

Office: C-113 • Tel: 210 7586

Review of Magnetic Circuits

Review of Magnetic Circuits

- <u>Magnetic Materials</u>
- <u>EE564-Transformer Design</u>

Transformer Design

References:

- <u>Mohan, Design of Magnetic Components</u>
- Erickson, Inductor Design
- <u>Erickson, Transformer Design</u>
- <u>Hurley, Magnetic Design</u>

. Magnetic Design: Calculating B, H, magnetic energy

. Magnetic Design: Calculating B, H, magnetic energy

• Electrical Design: Choosing number of turns, copper size, wire type, current density

. Magnetic Design: Calculating B, H, magnetic energy

- Electrical Design: Choosing number of turns, copper size, wire type, current density
- Parameter Estimation: Inductance, Leakage, Resistance

. Magnetic Design: Calculating B, H, magnetic energy

• Electrical Design: Choosing number of turns, copper size, wire type, current density

- Parameter Estimation: Inductance, Leakage, Resistance
- . Thermal: Losses, Efficiency

Typical Core

Core Types

- . U, I Core
- . E Core
- . Toroid Core
- Pot Core

Core Materials

• Ferrites

- . Laminated Electrical Sheets
- . Kool Mu Powder
- Metglass
- Powdered Iron

Core Bobbin

<u>Karkas Çeşitleri</u>

<u>Coil Winding</u>, <u>toroidal winding</u>

E-Core

<u>Nüve Çeşitleri</u>

Pot Core

Inductor Fundamentals

Review of Magnetic Circuits

- EE361-Inductors
- <u>EE361-Practical Transformers</u>
- <u>Magnetic Materials</u>
- <u>EE564-Transformer Design</u>

. Winding area, copper area

- . Winding area, copper area
- . Fill Factor (k_{cu})

- . Winding area, copper area
- . Fill Factor (k_{cu})
- $\cdot \, k_{cu} \, = \, 0.3$ for Litz wire
- $\cdot \, k_{cu} = 0.6$ for round wire
- . $k_{cu} = 0.7 0.8$ for rectangular wire

Typical core loss for a power ferrite

Core Loss

Steinmetz's Equation

Core Loss

Steinmetz's Equation

$$P_{fe} = K_{fe} f^lpha (\Delta B)^eta A_c l_c$$

Usually the constants are given in the datasheet

Alternatively core loss graphs can be available

Skin Effect

For 100 C copper resistivity:

Skin Effect

For 100 C copper resistivity:

$$\delta = \frac{7.5}{\sqrt{f}}\,\mathrm{cm}$$

Skin Depth

16/34

Proximity Effect

Current loss induced by adjacent coils

Proximity Effect

Current loss induced by adjacent coils

Coil-1 carries a high frequency current, Coil-2 open circuited. 17/34

Increased copper loss

Leakage Flux

Leakage Flux

Leakage Flux

MMF Distribution

Can help to reduce proximity effect and leakage

21/34

Worst Case

Better Case

Best Case

• <u>Hioki, IM3533</u>

Equivalent Circuit Models

Equivalent Circuit Models

Series equivalent circuit

Parallel equivalent circuit

Equivalent Circuit Models

	10Hz	1kHz	100kHz	5MHz	300MHz
100mH	6.3Ω	630Ω	63kΩ	3.1MΩ	
10mH	630mΩ	63Ω	6.3kΩ	310kΩ	
1mH	63mΩ	6.3Ω	630Ω	31kΩ	
100uH	6.3mΩ	630mΩ	63Ω	3.1kΩ	
10uH		63mΩ	6.3Ω	310Ω	
1uH		6.3mΩ	630mΩ	31Ω	1.9kΩ
100nH			63mΩ	3.1Ω	190Ω
10nH			6.3mΩ	310mΩ	19Ω
1nH					1.9Ω

Choose Lp

Depends on the case

Primary and Secondary Inductance Measurement

<u>Measure Primary Inductance with Osciloscope</u>

Measuring circuit for primary and secondary inductance

Leakage Inductance Measurement

<u>Mutual Inductance Measurement</u>: $L_m = (L_a - L_o)/4$

L measurement

Lo measurement

Measuring circuit for mutual inductance between coils

Turns Ratio Measurement

Application Notes:

- Coil Craft Application Notes
- <u>Selecting the Best Inductor</u>
- <u>Structured Design off Switching Power</u> <u>Transformers</u>

Application Notes:

- OnSemi-Transformer Design Consideration for Flyback
- <u>Transformers and Inductors for Power Electronics: Theory, Design</u> and <u>Applications</u>
- <u>Power Transformer Design</u>
- <u>Flyback Transformer Design</u>
- <u>Fuji, Flyback Transformer Design</u>

You can download this presentation from: <u>keysan.me/ee464</u>