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Control in Power Electronics
Control of a Wind Turbine
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Detailed Control of a Wind Turbine
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Control in Power Electronics
Most DC/DC converters controlled by analog
controllers:

Micro-controllers are not fast enough (both for computing and
sampling) at high switching frequencies

Cheap ( just an IC and a few passive elements)

Could be integrated to with drive circuit (LM1771)
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http://www.ti.com/product/LM1771/datasheet/abstract#snvs44619


Control in Power Electronics

Control with a microcontroller
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Control in Power Electronics

Control with an error ampli�er
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Buck Converter Controller
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Buck Converter Controller
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Control Loop Stability
Small steady-state error (i.e. gain at low
frequencies should be large)

No resonance: (i.e. gain at switching frequency
should be small)

Enough phase-margin: ( usually at least 45 degree
phase margin is aimed for stability)
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https://www.youtube.com/watch?v=ThoA4amCAX4


Phase Margin

Di�erence to -180 degrees when the gain is unity
(0dB)
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Phase Margin
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Small Signal Analysis
Don't worry, will be revisited!
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Small Signal Analysis
Don't worry, will be revisited!

Small Signal Model of a Transistor (EE311)
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Small Signal Analysis for the Buck Converter
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For a parameter, x:
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Small Signal Analysis
For a parameter, x:

: total quantity

: steady-state (DC) component

: AC term (small-signal variation)

x

X

x~

x = X + x~
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Small Signal Analysis
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Small Signal Analysis
For the buck converter

= +vo Vo v~o

d = D + d
~

= +iL IL i
~
L

= +vs Vs v~s
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Small Signal Analysis
Average Model of the buck converter
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Small Signal Analysis for the Buck Converter
Let's derive the small signal model for voltage
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Small Signal Analysis for the Buck Converter
Let's derive the small signal model for voltage

 

ignoring the last term

= dvx vs = ( + )(D+ )Vs v~s d
~

= D+ D+ +vx Vs v~s Vsd
~

v~sd
~

≈ D+ D+ = D+vx Vs v~s Vsd
~

vs Vsd
~
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Small Signal Analysis for the Buck Converter
Let's repeat for current

= d = ( + )(D+ )is iL IL i
~
L d

~

≈ D+iL ILd
~
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Exercise Assignment:

Power Electronics, Hart, Section 7.13

Buck Converter Small Signal Model
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Transfer Functions
RC Filter
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Transfer Functions
RC Filter Bode Plot
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http://www.onmyphd.com/?p=bode.plot


Transfer Functions

Let's do for the LCR part of the converter

Representation in the s-domain 22 / 80



Transfer Functions

Let's do for the LCR part of the converter

Transfer function in terms of d(s)

=
(s)vo

(s)vx

1

LC( + (1/RC)s+ 1/LC)s2

(s) = d(s)vx Vs

=
(s)vo

d(s)

Vs

LC( + (1/RC)s+ 1/LC)s2
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Realistic RLC
Non-ideal elements can e�ect stability

Resistance of the inductor

ESR of capacitor (series resistance)
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Let's repeat the case with non-ideal capacitor

Capacitor with series resistance
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Let's repeat the case with non-ideal capacitor

=
(s)vo

d(s)

Vs

LC

1 + s RrC

(1 + /R) + s(1/RC + /L) + 1/LC)s2 rC rC
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Let's repeat the case with non-ideal capacitor

Can be simpli�ed by assuming 

Notice the extra zero introduced by ESR!

=
(s)vo

d(s)

Vs

LC

1 + s RrC

(1 + /R) + s(1/RC + /L) + 1/LC)s2 rC rC

<< RrC

Vs

LC

1 + s RrC

+ s(1/RC + /L) + 1/LC)s2 rC
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PWM Block Transfer Function
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PWM Block Transfer Function

for a saw-tooth PWM generator with Vp peak voltage

d =
vc

Vp
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PWM Block Transfer Function

for a saw-tooth PWM generator with Vp peak voltage

Transfer function

d =
vc

Vp

=
d(s)

(s)vc

1

Vp
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PWM Block Transfer Function

Be careful with high-frequency control bandwidth
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PWM Block Transfer Function

Be careful with high-frequency control bandwidth
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What about in switching components?
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Problem:
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What about in switching components?

Problem:

Multi-mode systems (topology changes with
switching)

Di�erent transfer function for on-o� states

Can use non-linear controller, or multiple linear
controllers (but di�cult to implement)
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What about in switching components?
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What about in switching components?

Solution:
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What about in switching components?

Solution:

Convert multi-mode to single-mode system

Linearizing the system with averaging wrt duty
cycle

Use a linear controller with required characteristics

Details in the textbook (Mohan)
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Case Study (Mohan 10-1)
Find the transfer function of forward converter
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Case Study (Mohan 10-1)
Find the transfer function of forward converter

Note the state variables
31 / 80



Case Study (Mohan 10-1)
Switch ON
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Case Study (Mohan 10-1)
Switch OFF
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Case Study (Mohan 10-1)
Steady State Transfer Function
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Case Study (Mohan 10-1)
AC Transfer Function
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Case Study (Mohan 10-1)
AC Transfer Function

Remember this equation?
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Case Study (Mohan 10-1)
AC Transfer Function

Remember this equation?

(s) =Tp

(s)v~o

(s)d
~

= Vd
1 + s CrC

LC[ + s(1/RC + ( + )/L) + 1/LCs2 rC rL
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AC Transfer Function
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Case Study (Mohan 10-1)
AC Transfer Function

+ 2ξ s+s2 ω0 ω2
0

=ω0
1

LC
−−−√

ξ =
1/RC + ( + )/LrC rL

2ω0
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Case Study (Mohan 10-1)
AC Transfer Function Becomes

where 

(s) =Tp Vd

ω2
0

ωz

s+ωz

+ 2ξ s+s2 ω0 ω2
0

=ωz
1

CrC
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Example (Mohan 10-1)
Put the parameters into the equation

= 8VVd

= 5VVo

= 20mΩrL

L = 5μH

= 10mΩrC

C = 2mF

R = 200mΩ

= 200kHzfs
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Example (Mohan 10-1)
Bode Plot (Gain)
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Example (Mohan 10-1)
Bode Plot (Phase)
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Flyback Converter
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Flyback Converter
Equat�on 10-86

(s) =Tp

(s)v~o

(s)d
~
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Flyback Converter
Equat�on 10-86

(s) =Tp

(s)v~o

(s)d
~

(s) = f(D)Tp Vd

(1 + s/ )(1 − s/ )ωz1 ωz2

a + bs+ cs2
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Flyback Converter
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Flyback Converter
Bode Plot (Gain)
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Flyback Converter
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Flyback Converter
Bode Plot (Phase)
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A few readings for controller design
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A few readings for controller design

Control Design of a Boost Converter Using Frequency Response
Data

PID Control Tuning for Buck Converter

Design digital controllers for power electronics using simulation

Bode Response of Simulink Model

How to Run an AC Sweep with PSIM?

Peak Current Control with PSIM

Plexim-Frequency Analysis of Buck Converter
44 / 80

https://www.mathworks.com/help/slcontrol/examples/control-design-of-a-boost-converter-using-frequency-response-data.html
https://www.mathworks.com/videos/pid-controller-tuning-for-a-buck-converter-1504291092156.html
https://www.mathworks.com/discovery/power-electronics-simulation.html
https://www.mathworks.com/help/slcontrol/gs/bode-response-of-simulink-model.html
https://www.youtube.com/watch?v=nbFo-NMeY_w
https://powersimtech.com/drive/uploads/2016/03/Tutorial-Peak-current-mode-control.pdf
https://www.plexim.com/support/application-examples/187


Controller Design
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Controller Design
Generalized Compensated Error Ampli�er
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Controller Design
Generalized Compensated Error Ampli�er
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Types of Error Ampli�er
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Types of Error Ampli�er

Common Ones:

Type-1

Type-2

Type-3
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Type-1 Error Ampli�er

Simple Integrator

Has one pole at the origin
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Type-1 Error Ampli�er
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Type-2 Error Ampli�er (Most Common Type)
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Type-2 Error Ampli�er (Most Common Type)

Has two poles: at origin and one at zero-pole pair

90 degrees phase boost can be obtained due to single zero
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Type-2 Error Ampli�er (Most Common Type)
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Type-2 Error Ampli�er (Most Common Type)

Note the phase boost 50 / 80



Type-3 Error Ampli�er
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Type-3 Error Ampli�er

has two zeros can can boost up to 180 degrees 51 / 80



A Few Examples

TL494, pg. 7, 15

LM5015, Fig. 12, 15 52 / 80

https://pdf.direnc.net/upload/tl494-datasheet.pdf
http://www.ti.com/lit/ds/snvs538c/snvs538c.pdf


Putting all Together
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Putting all Together

A controller just increases the gain (Proportional)
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Putting all Together

A controller just increases the gain (Proportional)

Increasing gain usually reduces phase margin (and reduces stability) 53 / 80



Putting all Together
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Putting all Together

A proper controller (adjust gain and phase margin)
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Putting all Together

A proper controller (adjust gain and phase margin)
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More Information
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More Information

Fundamentals of Power Electronics, Erickson

Phase Margin, Crossover Frequency, and Stability

Loop Stability Analysis of Voltage Mode Buck Regulator

DC-DC Converters Feedback and Control

Modeling and Loop Compensation Design

Compensator Design Procedure
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https://www.eeweb.com/profile/cody-miller/articles/bode-plot-phase-margin-crossover-frequency-and-stability
http://www.ti.com/lit/an/slva301/slva301.pdf
http://www.onsemi.com/pub/Collateral/TND352-D.PDF
http://cds.linear.com/docs/en/application-note/AN149fa.pdf
https://www.infineon.com/dgdl/an-1162.pdf?fileId=5546d462533600a40153559a8e17111a


You can download this presentation from:
keysan.me/ee464
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http://keysan.me/ee464


Saved for further reference

Ready?
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Saved for further reference

Ready?

Down the rabbit hole
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Linearization with State-Space Averaging
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Linearization with State-Space Averaging
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 (for switch on, dTs)= x +ẋ A1 B1vd
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Linearization with State-Space Averaging

Obtain two states (for switch on and siwtch o� )

 (for switch on, dTs)

 (for switch o�, (1-d)Ts)

where, A1 and A2 are state matrices

B1 and B2 are vectors

= x +ẋ A1 B1vd

= x +ẋ A2 B2vd
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Example:
Mohan 10.1
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Linearization with State-Space Averaging
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Linearization with State-Space Averaging

Find weighted average
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Linearization with State-Space Averaging

Find weighted average

A = d + (1 − d)A1 A2

B = d + (1 − d)B1 B2
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Linearization with State-Space Averaging

Find weighted average

 (for switch o�, (1-d)Ts)

A = d + (1 − d)A1 A2

B = d + (1 − d)B1 B2

= Ax + Bẋ vd
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Similar calculations for the output voltage

 (for switch on, dTs)

 (for switch o�, (1-d)Ts)

where C1 and C2 are transposed vectors

= xvo C1

= xvo C2
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Similar calculations for the output voltage

where C1 and C2 are transposed vectors

= Cxvo

C = d + (1 − d)C1 C2
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Use Small signal model

Equations 10.46-10.52
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Use Small signal model

Equations 10.46-10.52

x = X+ x~
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Use Small signal model

Equations 10.46-10.52

x = X+ x~

= AX+B +Ax~̇ Vd x~

+[( − )X+ ( − ) ]A1 A2 B1 B2 Vd d
~
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Use Small signal model

Equations 10.46-10.52

In the steady state:

=0
Use derivations from eq.10.53-10.59

x = X+ x~

= AX+B +Ax~̇ Vd x~

+[( − )X+ ( − ) ]A1 A2 B1 B2 Vd d
~

Ẋ
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Steady State DC Voltage Transfer Function
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Steady State DC Voltage Transfer Function

= −C B
Vo

Vd

A−1
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Small Signal Model to Get AC Transfer
Function
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Small Signal Model to Get AC Transfer
Function

(s) =Tp

(s)v~o

(s)d
~

= C[sI −A [( − )X+ ( − ) ]]−1 A1 A2 B1 B2 Vd

+( − )X)]C1 C2
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Example (Mohan 10-1)
Find the transfer function of forward converter
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Example (Mohan 10-1)
Find the transfer function of forward converter

Note the state variables
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Example (Mohan 10-1)
Switch ON
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Example (Mohan 10-1)
Switch OFF
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Example (Mohan 10-1)
Switch OFF
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If parasitic resistances are small
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AC Transfer Function
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Example (Mohan 10-1)
AC Transfer Function Becomes

where 

(s) =Tp Vd

ω2
0

ωz

s+ωz

+ 2ξ s+s2 ω0 ω2
0

=ωz
1

CrC
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Example (Mohan 10-1)
Put the parameters into the equation

= 8VVd

= 5VVo

= 20mΩrL

L = 5μH

= 10mΩrC

C = 2mF

R = 200mΩ

= 200kHzfs
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Example (Mohan 10-1)
Bode Plot (Gain)
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Example (Mohan 10-1)
Bode Plot (Phase)
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Flyback Converter
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Flyback Converter
Bode Plot (Gain)
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Flyback Converter
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Flyback Converter
Bode Plot (Phase)
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