EE-464 STATIC POWER CONVERSION-II
 Controller Design in Power Electronics
 Ozan Keysan
 keysan.me
 Office: C-113 • Tel: 2107586

Control in Power Electronics

Control of a Wind Turbine

Detailed Control of a Wind Turbine

Control in Power Electronics

Most DC/DC converters controlled by analog controllers:

- Micro-controllers are not fast enough (both for computing and sampling) at high switching frequencies
- Cheap (just an IC and a few passive elements)
- Could be integrated to with drive circuit (LM17.71)

Control in Power Electronics

Control with a microcontroller

Control in Power Electronics

Control with an error amplifier

Buck Converter Controller

Buck Converter Controller

Control Loop Stability

. Small steady-state error (i.e. gain at low frequencies should be large)
. No resonance: (i.e. gain at switching frequency should be small)
. Enough phase-margin: (usually at least 45 degree phase margin is aimed for stability)

Phase Margin

$|\beta A|$

Difference to -180 degrees when the gain is unity (OdB)

Phase Margin

Small Signal Analysis

Don't worry, will be revisited!

Small Signal Analysis

Don't worry, will be revisited!

Small Signal Model of a Transistor (EE311)

Small Signal Analysis for the Buck Converter

(b)

Small Signal Analysis

Small Signal Analysis

For a parameter, x :

Small Signal Analysis

For a parameter, x :

. x : total quantity

Small Signal Analysis

For a parameter, x :

. x : total quantity
. X : steady-state (DC) component

Small Signal Analysis

For a parameter, x :
. x : total quantity
. X : steady-state (DC) component
. \tilde{x} : AC term (small-signal variation)

Small Signal Analysis

For a parameter, x :

. x : total quantity

- X : steady-state (DC) component
. \tilde{x} : AC term (small-signal variation)

$$
x=X+\tilde{x}
$$

Small Signal Analysis

Small Signal Analysis

For the buck converter

$$
\begin{aligned}
& v_{o}=V_{o}+\tilde{v}_{o} \\
& d=D+\tilde{d} \\
& i_{L}=I_{L}+\tilde{i}_{L} \\
& v_{s}=V_{s}+\tilde{v}_{s}
\end{aligned}
$$

Small Signal Analysis

Average Model of the buck converter

Small Signal Analysis for the Buck Converter
 Let's derive the small signal model for voltage

Small Signal Analysis for the Buck Converter

Let's derive the small signal model for voltage
$v_{x}=v_{s} d$

Small Signal Analysis for the Buck Converter

Let's derive the small signal model for voltage

$$
v_{x}=v_{s} d=\left(V_{s}+\tilde{v}_{s}\right)(D+\tilde{d})
$$

Small Signal Analysis for the Buck Converter

Let's derive the small signal model for voltage

$$
\begin{aligned}
& v_{x}=v_{s} d=\left(V_{s}+\tilde{v}_{s}\right)(D+\tilde{d}) \\
& v_{x}=V_{s} D+\tilde{v}_{s} D+V_{s} \tilde{d}+\tilde{v}_{s} \tilde{d}
\end{aligned}
$$

Small Signal Analysis for the Buck Converter

Let's derive the small signal model for voltage

$$
\begin{aligned}
& v_{x}=v_{s} d=\left(V_{s}+\tilde{v}_{s}\right)(D+\tilde{d}) \\
& v_{x}=V_{s} D+\tilde{v}_{s} D+V_{s} \tilde{d}+\tilde{v}_{s} \tilde{d}
\end{aligned}
$$

ignoring the last term

Small Signal Analysis for the Buck Converter

Let's derive the small signal model for voltage

$$
\begin{aligned}
& v_{x}=v_{s} d=\left(V_{s}+\tilde{v}_{s}\right)(D+\tilde{d}) \\
& v_{x}=V_{s} D+\tilde{v}_{s} D+V_{s} \tilde{d}+\tilde{v}_{s} \tilde{d}
\end{aligned}
$$

ignoring the last term
$v_{x} \approx V_{s} D+\tilde{v}_{s} D+V_{s} \tilde{d}=v_{s} D+V_{s} \tilde{d}$

Small Signal Analysis for the Buck Converter

Let's repeat for current
$i_{s}=i_{L} d=\left(I_{L}+\tilde{i}_{L}\right)(D+\tilde{d})$
$\approx i_{L} D+I_{L} \tilde{d}$

Exercise Assignment:

Power Electronics, Hart, Section 7.13
Buck Converter Small Signal Model

Transfer Functions

RC Filter

Transfer Functions

RC Filter Bode Plot

Transfer Functions

Let's do for the LCR part of the converter

Representation in the s-domain

Transfer Functions

Let's do for the LCR part of the converter

$$
\begin{aligned}
& \frac{v_{o}(s)}{v_{x}(s)}=\frac{1}{L C\left(s^{2}+(1 / R C) s+1 / L C\right)} \\
& v_{x}(s)=V_{s} d(s)
\end{aligned}
$$

Transfer function in terms of $\mathrm{d}(\mathrm{s})$

$$
\frac{v_{o}(s)}{d(s)}=\frac{V_{s}}{L C\left(s^{2}+(1 / R C) s+1 / L C\right)}
$$

Realistic RLC

Non-ideal elements can effect stability

. Resistance of the inductor
. ESR of capacitor (series resistance)

Let's repeat the case with non-ideal capacitor

Capacitor with series resistance

Let's repeat the case with non-ideal capacitor

$$
\frac{v_{o}(s)}{d(s)}=\frac{V_{s}}{L C} \frac{1+s r_{C} R}{\left.s^{2}\left(1+r_{C} / R\right)+s\left(1 / R C+r_{C} / L\right)+1 / L C\right)}
$$

Let's repeat the case with non-ideal capacitor

$$
\frac{v_{o}(s)}{d(s)}=\frac{V_{s}}{L C} \frac{1+s r_{C} R}{\left.s^{2}\left(1+r_{C} / R\right)+s\left(1 / R C+r_{C} / L\right)+1 / L C\right)}
$$

Can be simplified by assuming $r_{C} \ll R$

$$
\frac{V_{s}}{L C} \frac{1+s r_{C} R}{\left.s^{2}+s\left(1 / R C+r_{C} / L\right)+1 / L C\right)}
$$

Notice the extra zero introduced by ESR!

PWM Block Transfer Function

PWM Block Transfer Function

$d=\frac{v_{c}}{V_{p}}$
for a saw-tooth PWM generator with Vp peak voltage

PWM Block Transfer Function

$d=\frac{v_{c}}{V_{p}}$
for a saw-tooth PWM generator with Vp peak voltage
Transfer function

$$
\frac{d(s)}{v_{c}(s)}=\frac{1}{V_{p}}
$$

PWM Block Transfer Function

Be careful with high-frequency control bandwidth

PWM Block Transfer Function

Be careful with high-frequency control bandwidth

What about in switching components?

What about in switching components?
Problem:

What about in switching components?
Problem:
. Multi-mode systems (topology changes with switching)

What about in switching components?
Problem:
. Multi-mode systems (topology changes with switching)
. Different transfer function for on-off states

What about in switching components?

Problem:

. Multi-mode systems (topology changes with switching)
. Different transfer function for on-off states

- Can use non-linear controller, or multiple linear controllers (but difficult to implement)

What about in switching components?

What about in switching components?

Solution:

What about in switching components?

Solution:

. Convert multi-mode to single-mode system

What about in switching components?

Solution:

. Convert multi-mode to single-mode system

- Linearizing the system with averaging wrt duty cycle

What about in switching components?
Solution:
. Convert multi-mode to single-mode system

- Linearizing the system with averaging wrt duty cycle
- Use a linear controller with required characteristics

What about in switching components?
Solution:
. Convert multi-mode to single-mode system

- Linearizing the system with averaging wrt duty cycle
- Use a linear controller with required characteristics

Details in the textbook (Mohan)

Case Study (Mohan 10-1)

Find the transfer function of forward converter

Case Study (Mohan 10-1)

Find the transfer function of forward converter

Note the state variables

Case Study (Mohan 10-1)

Switch ON

Case Study (Mohan 10-1)

Switch OFF

Case Study (Mohan 10-1)

Steady State Transfer Function

Case Study (Mohan 10-1)

Steady State Transfer Function
$\frac{V_{o}}{V_{d}}=-C A^{-1} B$

Case Study (Mohan 10-1)

Steady State Transfer Function
$\frac{V_{o}}{V_{d}}=-C A^{-1} B$
$\frac{V_{o}}{V_{d}}=D \frac{R+r_{C}}{R+\left(r_{C}+r_{L}\right)}$

Case Study (Mohan 10-1)

Steady State Transfer Function
$\frac{V_{o}}{V_{d}}=-C A^{-1} B$
$\frac{V_{o}}{V_{d}}=D \frac{R+r_{C}}{R+\left(r_{C}+r_{L}\right)}$
If parasitic resistances are small

Case Study (Mohan 10-1)

Steady State Transfer Function

$$
\begin{aligned}
& \frac{V_{o}}{V_{d}}=-C A^{-1} B \\
& \frac{V_{o}}{V_{d}}=D \frac{R+r_{C}}{R+\left(r_{C}+r_{L}\right)}
\end{aligned}
$$

If parasitic resistances are small
$\frac{V_{o}}{V_{d}} \approx D$

Case Study (Mohan 10-1)

AC Transfer Function

Case Study (Mohan 10-1)

AC Transfer Function

$$
T_{p}(s)=\frac{\tilde{v}_{o}(s)}{\tilde{d}(s)}
$$

Case Study (Mohan 10-1)

AC Transfer Function

$$
\begin{aligned}
& T_{p}(s)=\frac{\tilde{v}_{o}(s)}{\tilde{d}(s)} \\
& =V_{d} \frac{1+s r_{C} C}{L C\left[s^{2}+s\left(1 / R C+\left(r_{C}+r_{L}\right) / L\right)+1 / L^{\prime}\right.}
\end{aligned}
$$

Case Study (Mohan 10-1)

AC Transfer Function

$$
\begin{aligned}
& T_{p}(s)=\frac{\tilde{v}_{o}(s)}{\tilde{d}(s)} \\
& =V_{d} \frac{1+s r_{C} C}{L C\left[s^{2}+s\left(1 / R C+\left(r_{C}+r_{L}\right) / L\right)+1 / L^{\prime}\right.}
\end{aligned}
$$

Remember this equation?

Case Study (Mohan 10-1)

AC Transfer Function

$$
\begin{aligned}
& T_{p}(s)=\frac{\tilde{v}_{o}(s)}{\tilde{d}(s)} \\
& =V_{d} \frac{1+s r_{C} C}{L C\left[s^{2}+s\left(1 / R C+\left(r_{C}+r_{L}\right) / L\right)+1 / L^{\prime}\right.}
\end{aligned}
$$

Remember this equation?
$s^{2}+2 \xi \omega_{0} s+\omega_{0}^{2}$

Case Study (Mohan 10-1)

AC Transfer Function
$s^{2}+2 \xi \omega_{0} s+\omega_{0}^{2}$

Case Study (Mohan 10-1)

AC Transfer Function
$s^{2}+2 \xi \omega_{0} s+\omega_{0}^{2}$
$\omega_{0}=\frac{1}{\sqrt{L C}}$

Case Study (Mohan 10-1)

AC Transfer Function

$$
s^{2}+2 \xi \omega_{0} s+\omega_{0}^{2}
$$

$\omega_{0}=\frac{1}{\sqrt{L C}}$
$\xi=\frac{1 / R C+\left(r_{C}+r_{L}\right) / L}{2 \omega_{0}}$

Case Study (Mohan 10-1)

AC Transfer Function Becomes
$T_{p}(s)=V_{d} \frac{\omega_{0}^{2}}{\omega_{z}} \frac{s+\omega_{z}}{s^{2}+2 \xi \omega_{0} s+\omega_{0}^{2}}$
where $\omega_{z}=\frac{1}{r_{C} C}$

Example (Mohan 10-1)

Put the parameters into the equation
$V_{d}=8 V$
$V_{o}=5 \mathrm{~V}$
$r_{L}=20 \mathrm{~m} \Omega$
$L=5 \mu H$
$r_{C}=10 m \Omega$
$C=2 m F$
$R=200 m \Omega$
$f_{s}=200 \mathrm{kHz}$

Example (Mohan 10-1)

Bode Plot (Gain)

Example (Mohan 10-1)

Bode Plot (Phase)

Flyback Converter

Flyback Converter

Equation 10-86

$$
T_{p}(s)=\frac{\tilde{v}_{o}(s)}{\tilde{d}(s)}
$$

Flyback Converter

Equation 10-86

$$
\begin{aligned}
& T_{p}(s)=\frac{\tilde{v}_{o}(s)}{\tilde{d}(s)} \\
& T_{p}(s)=V_{d} f(D) \frac{\left(1+s / \omega_{z 1}\right)\left(1-s / \omega_{z 2}\right)}{a s^{2}+b s+c}
\end{aligned}
$$

Flyback Converter

Flyback Converter

Bode Plot (Gain)

Flyback Converter

Flyback Converter

Bode Plot (Phase)

A few readings for controller design

A few readings for controller design

- Control Design of a Boost Converter Using Frequency Response Data
- PID Control Tuning for Buck Converter
- Designdigital controllers for power electronics using simulation
- Bode Response of Simulink Model
- How to Run an AC Sweep with PSIM?
- Peak Current Control with PSIM
- Plexim-Frequency Analysis of Buck Converter

Controller Design

Controller Design

Generalized Compensated Error Amplifier

Controller Design

Generalized Compensated Error Amplifier

Types of Error Amplifier

Types of Error Amplifier

Common Ones:

- Type-1
- Type-2
- Type-3

Type-1 Error Amplifier

Figure 5. Schematic Diagram of a Type 1 Amplifier
Simple Integrator
Has one pole at the origin

Type-1 Error Amplifier

Figure 6. Transfer Function of a Type 1 Amplifier

Type-2 Error Amplifier (Most Common Type)

Type-2 Error Amplifier (Most Common Type)

Figure 7. Schematic Diagram of a Type 2 Amplifier

Has two poles: at origin and one at zero-pole pair 90 degrees phase boost can be obtained due to single zero

Type-2 Error Amplifier (Most Common Type)

Type-2 Error Amplifier (Most Common Type)

Figure 8. Transfer Function of a Type 2 Amplifier

Note the phase boost

Type-3 Error Amplifier

Type-3 Error Amplifier

Figure 9. Schematic Diagram of a Type 3 Amplifier

has two zeros can can boost up to 180 degrees

A Few Examples

Figure 15. Type II Compensator

- TL494, pg. 7, 15
. LM5015, Fig. 12, 15

Putting all Together

Putting all Together
A controller just increases the gain (Proportional)

Putting all Together

A controller just increases the gain (Proportional)

Increasing gain usually reduces phase margin (and reduces stability) 53/80

Putting all Together

Putting all Together
A proper controller (adjust gain and phase margin)

Putting all Together

A proper controller (adjust gain and phase margin)

More Information

More Information

- Fundamentals of Power Electronics, Erickson
- Phase Margin, Crossover Frequency, and Stability.
- Loop Stability Analysis of Voltage Mode Buck Regulator
- DC-DC Converters Feedback and Control
- Modeling and Loop Compensation Design
- Compensator Design Procedure

You can download this presentation from: keysan.me/ee464

Saved for further reference
 Ready?

Saved for further reference

Ready?
Down the rabbit hole

Linearization with State-Space Averaging

Linearization with State-Space Averaging

- Represent everthing in matrix form

Linearization with State-Space Averaging

- Represent everthing in matrix form
- Inductor current, and capacitor voltage as state variables

Linearization with State-Space Averaging

- Represent everthing in matrix form
- Inductor current, and capacitor voltage as state variables
. Obtain two states (for switch on and siwtch off)

Linearization with State-Space Averaging

- Represent everthing in matrix form
- Inductor current, and capacitor voltage as state variables
. Obtain two states (for switch on and siwtch off)
. Find the weighted average

Linearization with State-Space Averaging

Linearization with State-Space Averaging
Obtain two states (for switch on and siwtch off)

Linearization with State-Space Averaging
Obtain two states (for switch on and siwtch off)
$\dot{x}=A_{1} x+B_{1} v_{d}$ (for switch on, dTs)

Linearization with State-Space Averaging
Obtain two states (for switch on and siwtch off)
$\dot{x}=A_{1} x+B_{1} v_{d}$ (for switch on, dTs)
$\dot{x}=A_{2} x+B_{2} v_{d}$ (for switch off, (1-d)Ts)
where, A1 and A2 are state matrices
$B 1$ and $B 2$ are vectors

Example:

Mohan 10.1

Linearization with State-Space Averaging

Linearization with State-Space Averaging
Find weighted average

Linearization with State-Space Averaging

Find weighted average

$$
\begin{aligned}
& A=d A_{1}+(1-d) A_{2} \\
& B=d B_{1}+(1-d) B_{2}
\end{aligned}
$$

Linearization with State-Space Averaging
Find weighted average
$A=d A_{1}+(1-d) A_{2}$
$B=d B_{1}+(1-d) B_{2}$
$\dot{x}=A x+B v_{d}$ (for switch off, (1-d)Ts)

Similar calculations for the output voltage
$v_{o}=C_{1} x$ (for switch on, dTs)
$v_{o}=C_{2} x$ (for switch off, (1-d)Ts)
where C 1 and C 2 are transposed vectors

Similar calculations for the output voltage
$v_{o}=C x$
$C=d C_{1}+(1-d) C_{2}$
where C 1 and C 2 are transposed vectors

Use Small signal model

Equations 10.46-10.52

Use Small signal model

Equations 10.46-10.52
$x=X+\tilde{x}$

Use Small signal model

Equations 10.46-10.52

$$
\begin{aligned}
x= & X+\tilde{x} \\
\dot{\tilde{x}}= & A X+B V_{d}+A \tilde{x} \\
& +\left[\left(A_{1}-A_{2}\right) X+\left(B_{1}-B_{2}\right) V_{d}\right] \tilde{d}
\end{aligned}
$$

Use Small signal model

Equations 10.46-10.52
$x=X+\tilde{x}$
$\dot{\tilde{x}}=A X+B V_{d}+A \tilde{x}$

$$
+\left[\left(A_{1}-A_{2}\right) X+\left(B_{1}-B_{2}\right) V_{d}\right] \tilde{d}
$$

In the steady state:
$\dot{X}=0$

Use derivations from eq.10.53-10.59

Steady State DC Voltage Transfer Function

Steady State DC Voltage Transfer Function

$$
\frac{V_{o}}{V_{d}}=-C A^{-1} B
$$

Small Signal Model to Get AC Transfer Function

Small Signal Model to Get AC Transfer Function

$$
\begin{aligned}
& T_{p}(s)=\frac{\tilde{v}_{o}(s)}{\tilde{d}(s)} \\
& =C[s I-A]^{-1}\left[\left(A_{1}-A_{2}\right) X+\left(B_{1}-B_{2}\right) V_{d}\right] \\
& \left.\left.\quad+\left(C_{1}-C_{2}\right) X\right)\right]
\end{aligned}
$$

Example (Mohan 10-1)

Find the transfer function of forward converter

Example (Mohan 10-1)

Find the transfer function of forward converter

Note the state variables

Example (Mohan 10-1)

Switch ON

Example (Mohan 10-1)

Switch ON

Example (Mohan 10-1)

Switch OFF

Example (Mohan 10-1)
Switch OFF

Example (Mohan 10-1)

Steady State Transfer Function

Example (Mohan 10-1)

Steady State Transfer Function
$\frac{V_{o}}{V_{d}}=-C A^{-1} B$

Example (Mohan 10-1)

Steady State Transfer Function
$\frac{V_{o}}{V_{d}}=-C A^{-1} B$
$\frac{V_{o}}{V_{d}}=D \frac{R+r_{C}}{R+\left(r_{C}+r_{L}\right)}$

Example (Mohan 10-1)

Steady State Transfer Function

$\frac{V_{o}}{V_{d}}=-C A^{-1} B$
$\frac{V_{o}}{V_{d}}=D \frac{R+r_{C}}{R+\left(r_{C}+r_{L}\right)}$
If parasitic resistances are small

Example (Mohan 10-1)

Steady State Transfer Function

$$
\begin{aligned}
& \frac{V_{o}}{V_{d}}=-C A^{-1} B \\
& \frac{V_{o}}{V_{d}}=D \frac{R+r_{C}}{R+\left(r_{C}+r_{L}\right)}
\end{aligned}
$$

If parasitic resistances are small
$\frac{V_{o}}{V_{d}} \approx D$

Example (Mohan 10-1)

AC Transfer Function

Example (Mohan 10-1)

AC Transfer Function

$$
T_{p}(s)=\frac{\tilde{v}_{o}(s)}{\tilde{d}(s)}
$$

Example (Mohan 10-1)

AC Transfer Function

$$
\begin{aligned}
& T_{p}(s)=\frac{\tilde{v}_{o}(s)}{\tilde{d}(s)} \\
& T_{p}(s)=V_{d} \frac{1+s r_{C} C}{L C\left[s^{2}+s\left(1 / R C+\left(r_{C}+r_{L}\right) / L\right)+1 / L C\right]}
\end{aligned}
$$

Example (Mohan 10-1)

AC Transfer Function
$T_{p}(s)=\frac{\tilde{v}_{o}(s)}{\tilde{d}(s)}$
$T_{p}(s)=V_{d} \frac{1+s r_{C} C}{L C\left[s^{2}+s\left(1 / R C+\left(r_{C}+r_{L}\right) / L\right)+1 / L C\right]}$
Remember this equation?

Example (Mohan 10-1)

AC Transfer Function

$$
T_{p}(s)=\frac{\tilde{v}_{o}(s)}{\tilde{d}(s)}
$$

$T_{p}(s)=V_{d} \frac{1+s r_{C} C}{L C\left[s^{2}+s\left(1 / R C+\left(r_{C}+r_{L}\right) / L\right)+1 / L C\right]}$
Remember this equation?
$s^{2}+2 \xi \omega_{0} s+\omega_{0}^{2}$

Example (Mohan 10-1)

AC Transfer Function
$s^{2}+2 \xi \omega_{0} s+\omega_{0}^{2}$

Example (Mohan 10-1)

AC Transfer Function
$s^{2}+2 \xi \omega_{0} s+\omega_{0}^{2}$
$\omega_{0}=\frac{1}{\sqrt{L C}}$

Example (Mohan 10-1)

AC Transfer Function
$s^{2}+2 \xi \omega_{0} s+\omega_{0}^{2}$
$\omega_{0}=\frac{1}{\sqrt{L C}}$
$\xi=\frac{1 / R C+\left(r_{C}+r_{L}\right) / L}{2 \omega_{0}}$

Example (Mohan 10-1)

AC Transfer Function Becomes
$T_{p}(s)=V_{d} \frac{\omega_{0}^{2}}{\omega_{z}} \frac{s+\omega_{z}}{s^{2}+2 \xi \omega_{0} s+\omega_{0}^{2}}$
where $\omega_{z}=\frac{1}{r_{C} C}$

Example (Mohan 10-1)

Put the parameters into the equation
$V_{d}=8 V$
$V_{o}=5 \mathrm{~V}$
$r_{L}=20 \mathrm{~m} \Omega$
$L=5 \mu H$
$r_{C}=10 m \Omega$
$C=2 m F$
$R=200 m \Omega$
$f_{s}=200 \mathrm{kHz}$

Example (Mohan 10-1)

Bode Plot (Gain)

Example (Mohan 10-1)

Bode Plot (Phase)

Flyback Converter

Flyback Converter

Equation 10-86

$$
T_{p}(s)=\frac{\tilde{v}_{o}(s)}{\tilde{d}(s)}
$$

Flyback Converter

Equation 10-86

$$
\begin{aligned}
& T_{p}(s)=\frac{\tilde{v}_{o}(s)}{\tilde{d}(s)} \\
& T_{p}(s)=V_{d} f(D) \frac{\left(1+s / \omega_{z 1}\right)\left(1-s / \omega_{z 2}\right)}{a s^{2}+b s+c}
\end{aligned}
$$

Flyback Converter

Flyback Converter

Bode Plot (Gain)

Flyback Converter

Flyback Converter

Bode Plot (Phase)

