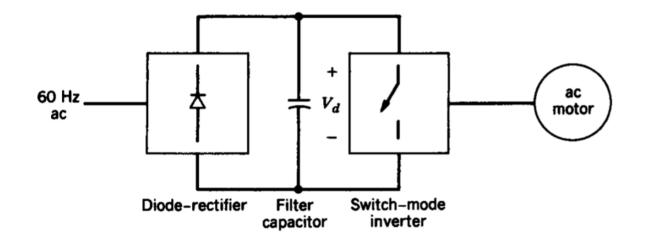
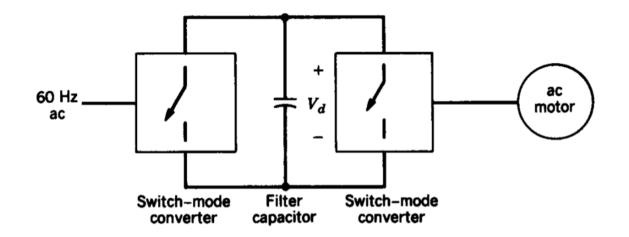
EE-464 STATIC POWER CONVERSION-II DC/AC Converters (Inverters) Ozan Keysan <u>keysan.me</u>

Office: C-113 • Tel: 210 7586

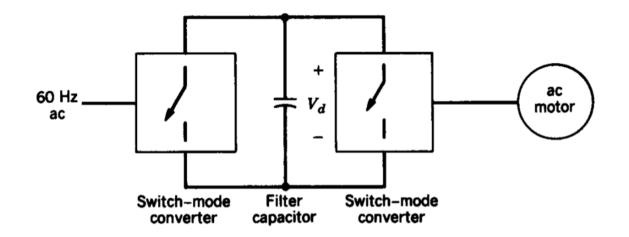
DC/AC Converters


DC/AC Converters

Inverters


AC Motor drive with unidirectional power flow

AC Motor drive with unidirectional power flow


AC Motor drive with bidirectional power flow

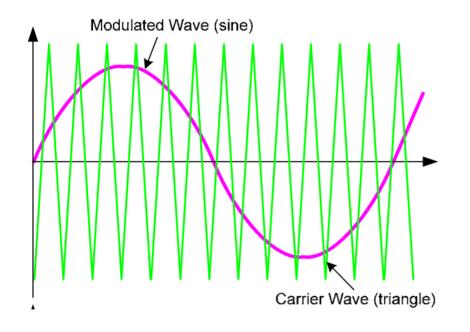
AC Motor drive with bidirectional power flow

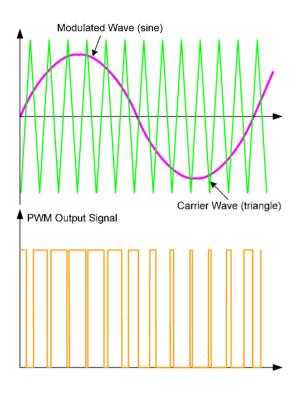
Back-to-Back Converter, Active Front-End Converter, Variable Frequency Drive (VFD)

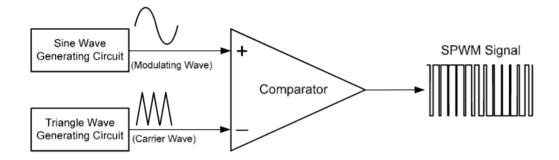
AC Motor drive with bidirectional power flow

Back-to-Back Converter, Active Front-End Converter, Variable Frequency Drive (VFD)

PWM Generation

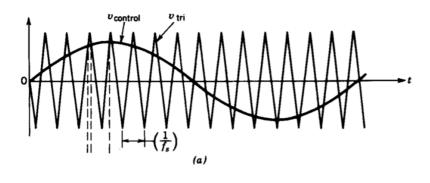

PWM Generation

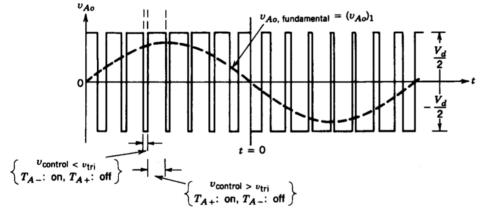

Sinusoidal PWM (SPWM)


- . The most common type
- There are many different PWM techniques (wait 2 weeks)

Sinusoidal PWM (SPWM)

Compare a sinusoidal wave with a carrier triangular wave

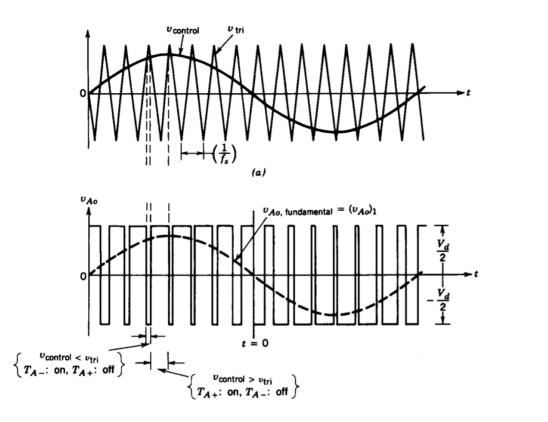




Analog generation of SPWM

PWM in one leg inverter

Frequency Modulation Ratio


Frequency Modulation Ratio

 $m_f = rac{f_s}{f_1}$

 f_s : Switching frequency

 $f_1\colon$ Fundamental frequency of AC output

What is m_f for this case?

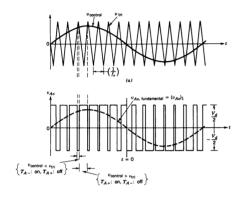
Preferred to have a high value ($m_f > 21$)

- i.e 2 kHz for 50 Hz: $m_f=40$

Preferred to have a high value ($m_f\,>\,21$)

- i.e 2 kHz for 50 Hz: $m_f=40$
- May not be possible for larger power applications

Preferred to have a high value ($m_f\,>\,21$)


- i.e 2 kHz for 50 Hz: $m_f=40$
- May not be possible for larger power applications
- Be aware of <u>audible noise</u> (not only fs, but also its harmonics)

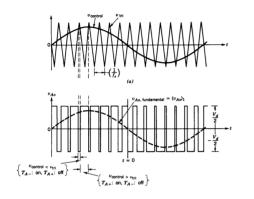
Preferred to have a high value ($m_f\,>\,21$)

- i.e 2 kHz for 50 Hz: $m_f=40$
- May not be possible for larger power applications
- Be aware of <u>audible noise</u> (not only fs, but also its harmonics)
- Asynchronous PWM can be used but not preferred

Synchronous PWM

f_s is an integer multiple of f_1

Synchronous PWM


f_s is an integer multiple of f_1

 $\cdot m_f$ is integer

Synchronous PWM

f_s is an integer multiple of f_1

- m_f is integer
- If not (asynchronous PWM), subharmonics of f_1 is generated

Small Frequency Modulation ($m_f\,<\,21$)

• Synchronous PWM should be used

Small Frequency Modulation ($m_f\,<\,21$)

- Synchronous PWM should be used
- m_f should be an odd integer

Modulation Index

Modulation Index

(Amplitude Modulation Ratio)

Modulation Index

(Amplitude Modulation Ratio)

$$m_a = rac{\hat{V}_{control}}{\hat{V}_{triangle}}$$

Modulation Index

(Amplitude Modulation Ratio)

$$m_a = rac{\hat{V}_{control}}{\hat{V}_{triangle}}$$

Linear region: $m_a\,<\,1$

Some Definitions

Modulation Index

(Amplitude Modulation Ratio)

$$m_a = rac{\hat{V}_{control}}{\hat{V}_{triangle}}$$

Linear region: $m_a\,<\,1$

Overmodulation: $m_a\,>\,1$

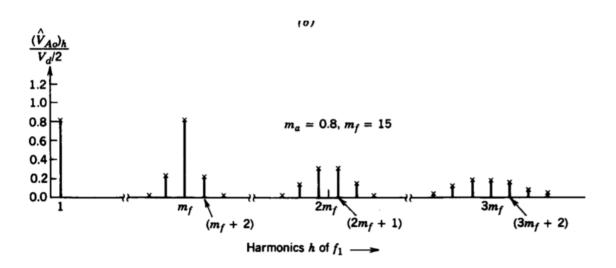
Fundamental voltage magnitude varies linearly with m_a

Fundamental voltage magnitude varies linearly with m_a

$${\hat V}_{ao1}=m_a {V_d\over 2}$$

Fundamental voltage magnitude varies linearly with m_a

$$egin{aligned} \hat{V}_{ao1} &= m_a rac{V_d}{2} \ V_{ao} &= rac{v_{control}}{\hat{V}_{triangle}} rac{V_d}{2} \end{aligned}$$


Fundamental voltage magnitude varies linearly with m_a

$$egin{aligned} \hat{V}_{ao1} &= m_a rac{V_d}{2} \ V_{ao} &= rac{v_{control}}{\hat{V}_{triangle}} rac{V_d}{2} \end{aligned}$$

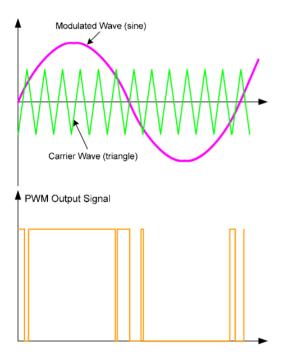
Other harmonics does NOT change linearly with \hat{V}_{ao1}

FFT in linear region

FFT in linear region

Notice the sidebands

m _a					
h	0.2	0.4	0.6	0.8	1.0
1	0.2	0.4	0.6	0.8	1.0
Fundamental					
m _f	1.242	1.15	1.006	0.818	0.601
$m_f \pm 2$	0.016	0.061	0.131	0.220	0.318
$m_f \pm 4$					0.018
$2m_f \pm 1$	0.190	0.326	0.370	0.314	0.181
$2m_f \pm 3$		0.024	0.071	0.139	0.212
$2m_f \pm 5$				0.013	0.033
$\overline{3m_f}$	0.335	0.123	0.083	0.171	0.113
$3m_f \pm 2$	0.044	0.139	0.203	0.176	0.062
$3m_f \pm 4$		0.012	0.047	0.104	0.157
$3m_f \pm 6$				0.016	0.044
$4m_f \pm 1$	0.163	0.157	0.008	0.105	0,068
$4m_f \pm 3$	0.012	0.070	0.132	0.115	0.009
$4m_f \pm 5$			0.034	0.084	0.119
$4m_f \pm 7$				0.017	0.050


Table 8-1 Generalized Harmonics of v_{Ao} for a Large m_{f} .

Note: $(\hat{V}_{Ao})_h / \frac{1}{2} V_d$ [= $(\hat{V}_{AN})_h / \frac{1}{2} V_d$] is tabulated as a function of m_a .

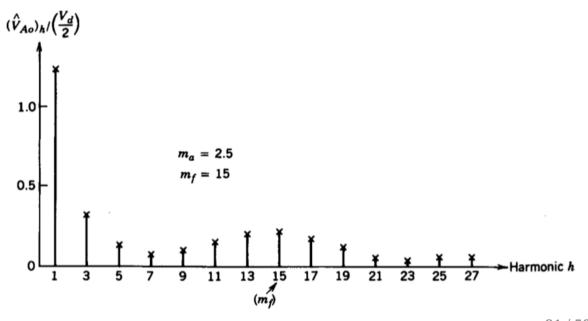
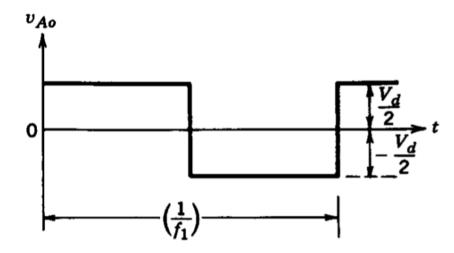
Advantages of choosing m_f as odd integer:

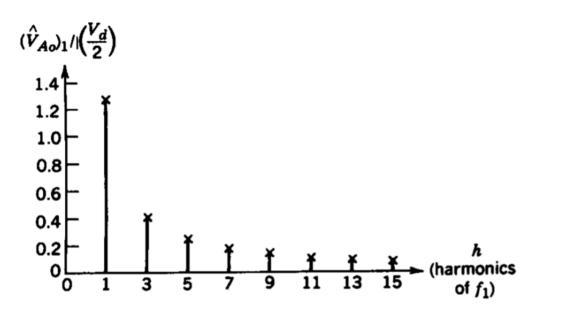
- Results in odd symmetry (f(-t)=-f(t))
- Results in half-wave symmetry (f(t)=-f(t+T/2))
- No even harmonics are present
- Only sine components exist (no cosine harmonics component)

Control signals gets bigger than the triangle waveform

Possible to create higher magnitude, but induce harmonics of f_1

Possible to create higher magnitude, but induce harmonics of f_1


Figure 8-7 Harmonics due to overmodulation; drawn for $m_a = 2.5$ and $m_f = 215^{.50}$

Worst Case?:

Worst Case?:Square Wave

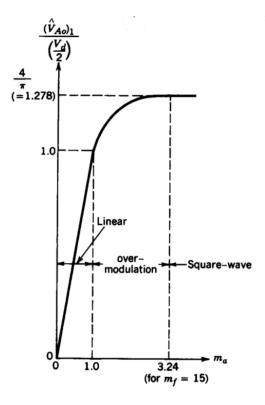
Square Wave Harmonics

23 / 50

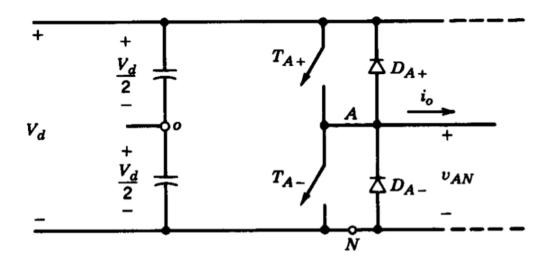
Square Wave Peak Voltage?

Square Wave Peak Voltage?

$$\hat{V}_{ao1} = rac{4}{\pi}rac{V_d}{2} = 1.273rac{V_d}{2}$$

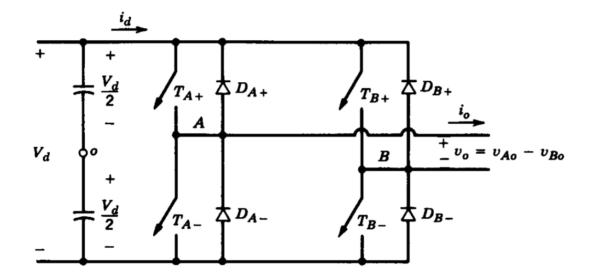

Square Wave Peak Voltage?

$$\hat{V_{ao1}} = rac{4}{\pi} rac{V_d}{2} = 1.273 rac{V_d}{2}$$


Fundamental harmonics:

$$\hat{V_{aoh}} = rac{\hat{V_{ao1}}}{h}$$

Over-modulation Index Variation



Single-Phase Half-Bridge Inverter

In order to have equal capacitor voltage, io cannot have a DC component

Single-Phase Full-Bridge Inverter

Voltage level is twice of the half bridge inverter

Same with the full-bridge DC/DC converter

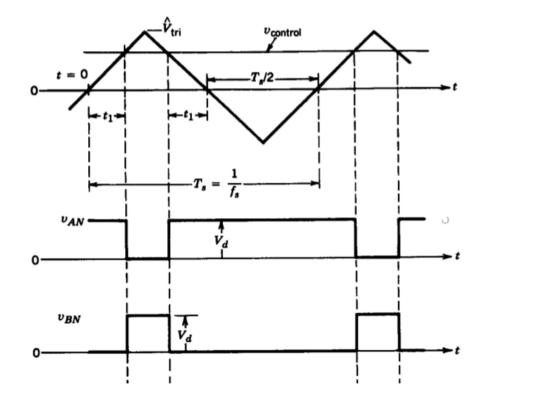
Same with the full-bridge DC/DC converter

 T_{A+} and T_{B-} are turn on and off together

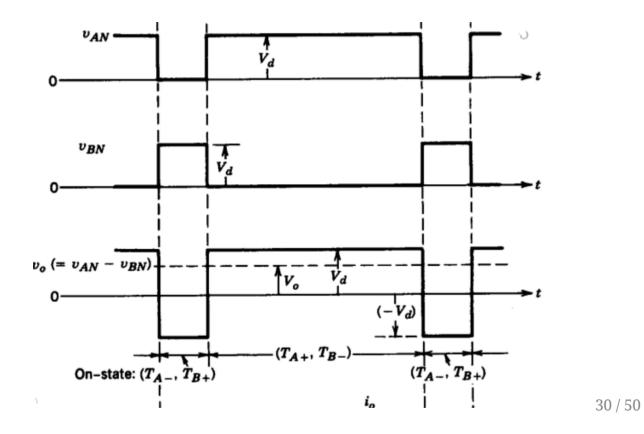
Same with the full-bridge DC/DC converter

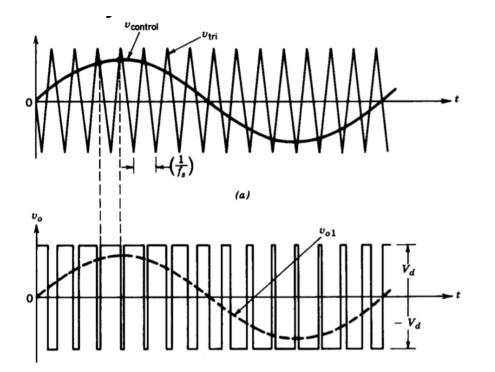
 T_{A+} and T_{B-} are turn on and off together

 T_{A-} and T_{B+} are complimentary of T_{A+} and T_{B-}


Same with the full-bridge DC/DC converter

 T_{A+} and T_{B-} are turn on and off together


 T_{A-} and T_{B+} are complimentary of T_{A+} and T_{B-}


Can give V_d or $-V_d$

Bi-polar Voltage Switching

Bi-polar Voltage Switching

31 / 50

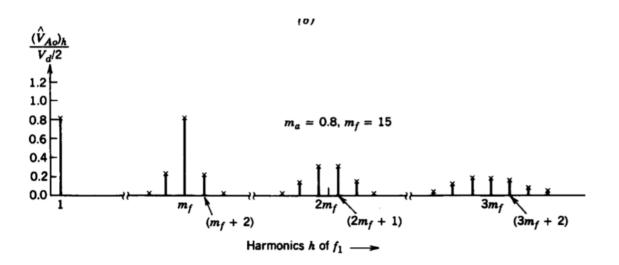
Voltage level is twice of the half bridge inverter

Voltage level is twice of the half bridge inverter

Linear Region

$$\hat{V}_{o1} = m_a V_d$$

Voltage level is twice of the half bridge inverter


Linear Region

$$\hat{V}_{o1}=m_a V_d$$

Over-modulation

$$V_d < {\hat V_{o1}} < rac{4}{\pi} V_d$$

Same harmonics

33 / 50

Unipolar PWM

Same with the full-bridge DC/DC converter

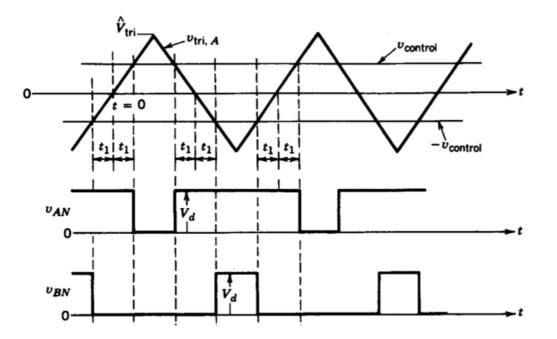
 T_{A+} and T_{B+} are controlled seperately

 T_{A-} and T_{B-} are complimetary of T_{A+} and T_{B+}

Unipolar PWM

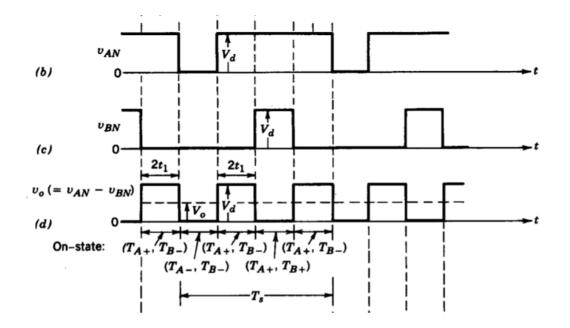
Same with the full-bridge DC/DC converter

 T_{A+} and T_{B+} are controlled seperately

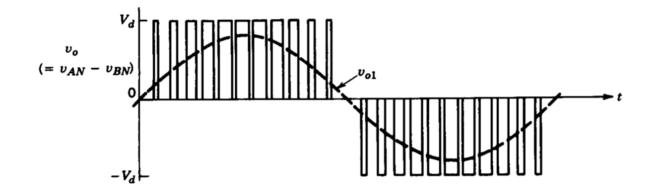

 T_{A-} and T_{B-} are complimetary of T_{A+} and T_{B+}

Can give V_d , 0, $-V_d$

$$V_o=0$$
 if T_{A+} and T_{B+} are ON


$$V_o=0$$
 if T_{A-} and T_{B-} are ON

Uni-polar Voltage Switching



35 / 50

Uni-polar Voltage Switching


Uni-polar PWM Harmonics

Uni-polar PWM Harmonics

Harmonics of twice the switching frequency.

Uni-polar PWM Harmonics

Harmonics of twice the switching frequency.

39 / 50

Harmonics Comparison

Bipolar PWM

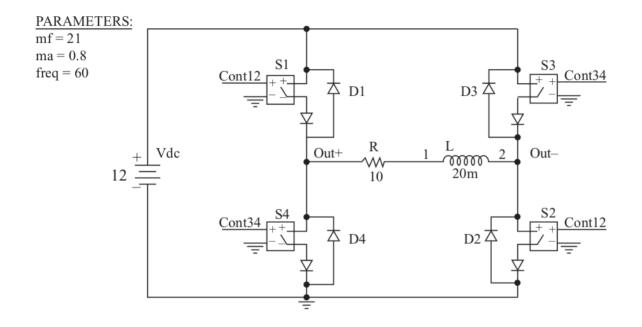
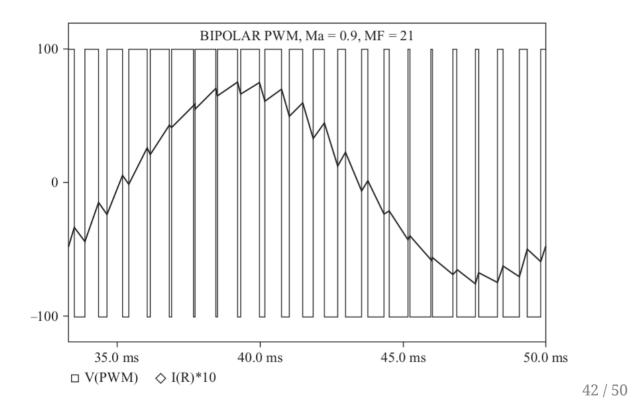
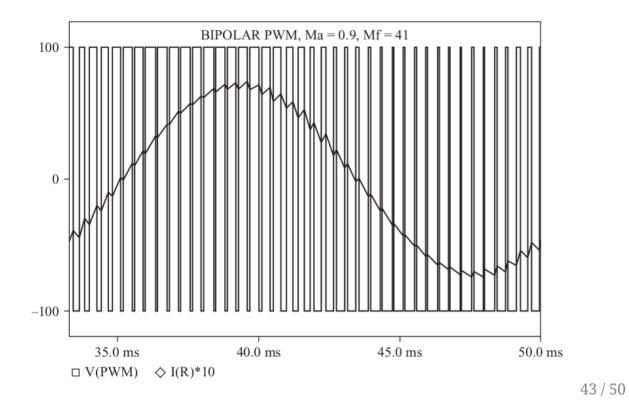
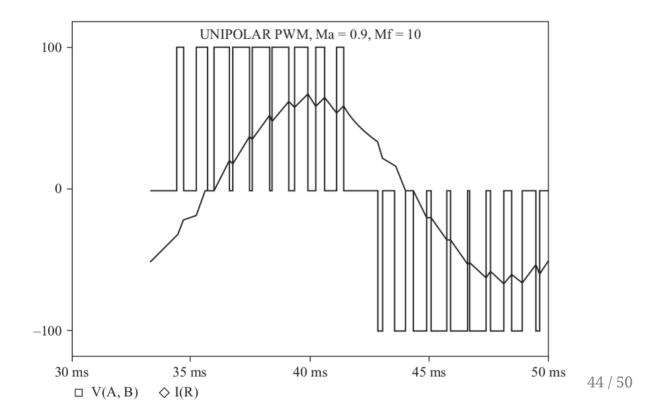
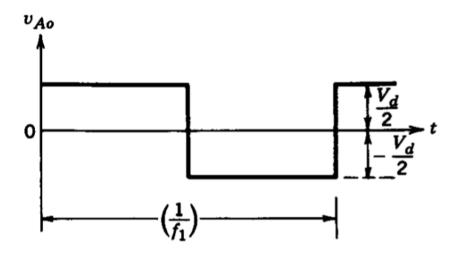

	$m_a=1$	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1
n=1	1.00	0.90	0.80	0.70	0.60	0.50	0.40	0.30	0.20	0.10
$n=m_f$	0.60	0.71	0.82	0.92	1.01	1.08	1.15	1.20	1.24	1.27
$n=m_f$ $n=mf\pm 2$	0.32	0.27	0.22	0.17	0.13	0.09	0.06	0.03	0.02	0.00

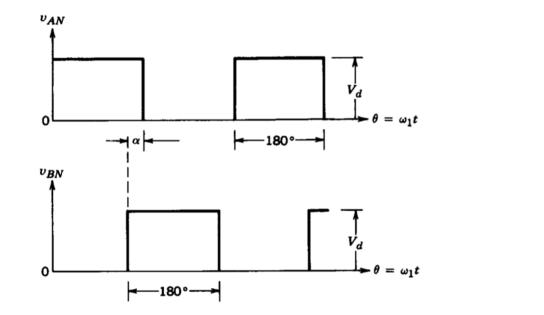
Table 8-3 Normalized Fourier Coefficients V_n/V_{dc} for Bipolar PWM


Unipolar PWM

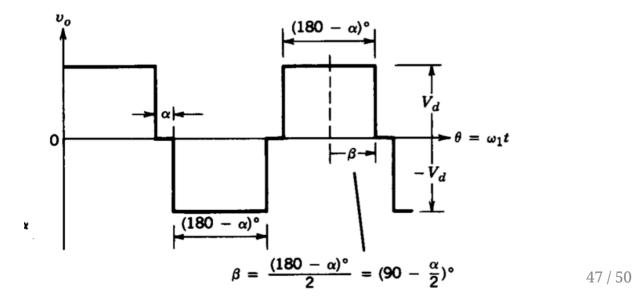

Table 8-5 Normalized Fourier Coefficients V_n/V_{dc} for Unipolar PWM in Fig. 8-18


	$m_a = 1$	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1
n=1	1.00	0.90	0.80	0.70	0.60	0.50	0.40	0.30	0.20	0.10
$n=2m_f\pm 1$	0.18	0.25	0.31	0.35	0.37	0.36	0.33	0.27	0.19	0.10
$n=2m_f\pm 1$ $n=2m_f\pm 3$	0.21	0.18	0.14	0.10	0.07	0.04	0.02	0.01	0.00	0.00
										40/5

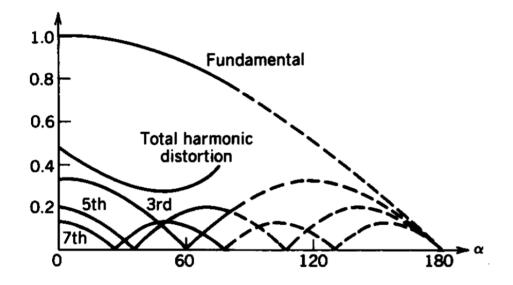

41 / 50



Generate Square wave with controllable off periods


Generate Square wave with controllable off periods

Van and Vbn has overlapping regions


Generate Square wave with controllable off periods

Van and Vbn has overlapping regions

What about harmonics?

What about harmonics?

For curious students: SHE: <u>Selective Harmonic Elimination</u>

Example:

Example:

Example 8.8 (Daniel W. Hart-Power Electronics)

n	$f_{n(Hz)}$	V_n (V)	$Z_n(\Omega)$	$I_n(\mathbf{A})$	$I_{n,\mathrm{rms}}\left(\mathrm{A}\right)$	$P_n(\mathbf{W})$
1	60	80.0	12.5	6.39	4.52	204.0
19	1140	22.0	143.6	0.15	0.11	0.1
21	1260	81.8	158.7	0.52	0.36	1.3
23	1380	22.0	173.7	0.13	0.09	0.1

Table 8-4 Fourier Series Quantities for the PWM Inverter of Example 8-8

You can download this presentation from: <u>keysan.me/ee464</u>