EE-464 STATIC POWER CONVERSION-II

Three Phase Inverters

Ozan Keysan
keysan.me

Office: C-113 • Tel: 2107586

Three Phase Inverters

ABB

Different Sized Variable Frequency Drives (VFD)

Three Phase Inverters

Three Phase Voltage-Source Inverters

Three Phase Voltage-Source Inverters

Three inverter legs are connected in parallel

Three Phase Voltage-Source Inverters

Three Phase Voltage-Source Inverters
. Do not close top and bottom switches at the same time

Three Phase Voltage-Source Inverters

. Do not close top and bottom switches at the same time
. Point (0) is not needed put shown for simplicity in calculations

Three Phase Voltage-Source Inverters

. Do not close top and bottom switches at the same time
. Point (0) is not needed put shown for simplicity in calculations
. Current can flow through the switch or anti-parallel diodes.

PWM Techniques

PWM Techniques

There are many different PWM techniques that will be covered:
. Square-wave (Six-step) PWM
. Sinusoidal PWM (SPWM)

- Hysteresis (Bang-Bang) Control
. Space-Vector PWM (SVPWM)
. Third harmonic injection

Six-Step Inverter

Commonly used in BLDC motor Drives

Six-Step Inverter

Commonly used in BLDC motor Drives

Six-Step Inverter

- Each switch has 50% duty ratio.
- Each leg has a phase difference of 120 degrees
- One switching action takes place at every 60 degrees

Six-Step Inverter

Six-Step Inverter

Six-Step Inverter
Line-to-line voltage: $V_{A B}=V_{A 0}-V_{B 0}$

Line-to-line voltages:

Square Wave Operation

BLDC Drive with square wave

Switching Sequence

Line-to-Line Voltages

(c)

Equivalent Phase Voltages

Line-to-Line Harmonics

Fourier Coefficients
$\hat{V}_{n, l-l}=\frac{1}{n} \frac{4}{\pi} V_{d c} \cos \left(n \frac{\pi}{6}\right)$
For: $n=6 k \pm 1=1,5,7,11,13 \ldots$

- No even harmonics
- No third order harmonics

Line-to-Line Harmonics
RMS of the fundamental component?

$$
V_{1, l-l, r m s}=\frac{1}{\sqrt{2}} \frac{4}{\pi} V_{d c} \frac{\sqrt{3}}{2}=0.78 V_{d c}
$$

Line-to-Line Harmonics
RMS of the fundamental component?
$V_{1, l-l, r m s}=\frac{1}{\sqrt{2}} \frac{4}{\pi} V_{d c} \frac{\sqrt{3}}{2}=0.78 V_{d c}$
Harmonics RMS:
$V_{n, l-l, r m s}=\frac{1}{n} 0.78 V_{d c}$
For: $n=6 k \pm 1=1,5,7,11,13 \ldots$

Line-to-Line Harmonics

Line-to-Neutral voltages:

Neutral point is floating

Voltage level changes every 60 degrees (that's why it's a six-step inverter!)

Line-to-Neutral Harmonics

Fourier Coefficients
$\hat{V}_{n, l-N}=\frac{1}{n} \frac{2}{3 \pi} V_{d c}\left(2+\cos \left(\frac{\pi n}{3}\right)-\cos \left(\frac{2 \pi n}{3}\right)\right.$.
For: $n=6 k \pm 1=1,5,7,11,13 \ldots$
Simpler Form
$\hat{V}_{n, l-N}=\frac{1}{n} \frac{2}{\pi} V_{d c}$

Line-to-Neutral Harmonics

$\hat{V}_{n, l-N}=\frac{1}{n} \frac{2}{\pi} V_{d c}$
For: $n=6 k \pm 1=1,5,7,11,13 \ldots$

- No even harmonics
- No third order harmonics

Example: (D. Hart. 8-12)

Example: (D. Hart. 8-12)

For the six-step three phase inverter shown below, Vin=100V, $f_{\text {out }}=60 \mathrm{~Hz}$. The load is Y -connected to load with a phase load of $R=10 \Omega, L=20 \mathrm{mH}$.

Calculate the total harmonic distortion (THD) of the load current and voltage.

Example: (D. Hart. 8-12)

Amplitude for load current at each frequency:
$I_{n}=\frac{V_{n, L-N}}{Z_{n}}$

Example: (D. Hart. 8-12)

Amplitude for load current at each frequency:

$$
I_{n}=\frac{V_{n, L-N}}{Z_{n}}=\frac{V_{n, L-N}}{\sqrt{R^{2}+(n \omega L)^{2}}}
$$

Example: (D. Hart. 8-12)

Amplitude for load current at each frequency:

$$
I_{n}=\frac{V_{n, L-N}}{Z_{n}}=\frac{V_{n, L-N}}{\sqrt{10^{2}+(n 2 \pi 600.02)^{2}}}
$$

Example: (D. Hart. 8-12)
Amplitude for load current at each frequency:
$I_{n}=\frac{V_{n, L-N}}{Z_{n}}=\frac{V_{n, L-N}}{\sqrt{10^{2}+(n 2 \pi 600.02)^{2}}}$
Line-to-Neutral Harmonics
$\hat{V}_{n, l-N}=\frac{1}{n} \frac{2}{\pi} V_{d c}$
For: $n=6 k \pm 1=1,5,7,11,13 \ldots$

Table 8.7 Fourier Components for the Six-Step Inverter of
Example 8-12

\boldsymbol{n}	$\boldsymbol{V}_{\boldsymbol{n}, \boldsymbol{L}-\boldsymbol{N}}(\mathbf{V})$	$\boldsymbol{Z}_{\boldsymbol{n}}(\Omega)$	$\boldsymbol{I}_{\boldsymbol{n}} \mathbf{(A)}$	$\boldsymbol{I}_{\boldsymbol{n}, \text { rms }}(\mathbf{A})$
1	63.6	12.5	5.08	3.59
5	12.73	39.0	0.33	0.23
7	9.09	53.7	0.17	0.12
11	5.79	83.5	0.07	0.05
13	4.90	98.5	0.05	0.04

Voltage THD=

Table 8.7 Fourier Components for the Six-Step Inverter of
Example 8-12

\boldsymbol{n}	$\boldsymbol{V}_{\boldsymbol{n}, \boldsymbol{L}-\boldsymbol{N}}(\mathbf{V})$	$\boldsymbol{Z}_{\boldsymbol{n}}(\Omega)$	$\boldsymbol{I}_{\boldsymbol{n}} \mathbf{(A)}$	$\boldsymbol{I}_{\boldsymbol{n}, \mathrm{rms}}(\mathbf{A})$
1	63.6	12.5	5.08	3.59
5	12.73	39.0	0.33	0.23
7	9.09	53.7	0.17	0.12
11	5.79	83.5	0.07	0.05
13	4.90	98.5	0.05	0.04

Voltage THD=

$\frac{\sqrt{\sum_{n=2}^{\infty} V_{n}^{2}}}{V_{1, r m s}} \approx \frac{\sqrt{12.73^{2}+9.09^{2}+5.79^{2}+4.90^{2}}}{63.6}=0.31=31 \%$

Table 8.7 Fourier Components for the Six-Step Inverter of
Example 8-12

\boldsymbol{n}	$\boldsymbol{V}_{\boldsymbol{n}, \boldsymbol{L}-\boldsymbol{N}}(\mathbf{V})$	$\boldsymbol{Z}_{\boldsymbol{n}}(\Omega)$	$\boldsymbol{I}_{\boldsymbol{n}} \mathbf{(A)}$	$\boldsymbol{I}_{\boldsymbol{n}, \text { rms }}(\mathbf{A})$
1	63.6	12.5	5.08	3.59
5	12.73	39.0	0.33	0.23
7	9.09	53.7	0.17	0.12
11	5.79	83.5	0.07	0.05
13	4.90	98.5	0.05	0.04

Current THD=

Table 8.7 Fourier Components for the Six-Step Inverter of
Example 8-12

\boldsymbol{n}	$\boldsymbol{V}_{\boldsymbol{n}, \boldsymbol{L}-\boldsymbol{N}}(\mathrm{V})$	$\boldsymbol{Z}_{\boldsymbol{n}}(\Omega)$	$\boldsymbol{I}_{\boldsymbol{n}} \mathbf{(A)}$	$\boldsymbol{I}_{\boldsymbol{n}, \text { rms }}(\mathbf{A})$
1	63.6	12.5	5.08	3.59
5	12.73	39.0	0.33	0.23
7	9.09	53.7	0.17	0.12
11	5.79	83.5	0.07	0.05
13	4.90	98.5	0.05	0.04

Current THD=

$\frac{\sqrt{\sum_{n=2}^{\infty} I_{n}{ }^{2}}}{I_{1, r m s}} \approx \frac{\sqrt{0.23^{2}+0.12^{2}+0.05^{2}+0.04^{2}}}{3.59}=0.07=7 \%$

Table 8.7 Fourier Components for the Six-Step Inverter of Example 8-12

\boldsymbol{n}	$\boldsymbol{V}_{\boldsymbol{n}, \boldsymbol{L}-\boldsymbol{N}}(\mathbf{V})$	$\boldsymbol{Z}_{\boldsymbol{n}}(\Omega)$	$\boldsymbol{I}_{\boldsymbol{n}} \mathbf{(A)}$	$\boldsymbol{I}_{\boldsymbol{n}, \mathrm{rms}}(\mathbf{A})$
1	63.6	12.5	5.08	3.59
5	12.73	39.0	0.33	0.23
7	9.09	53.7	0.17	0.12
11	5.79	83.5	0.07	0.05
13	4.90	98.5	0.05	0.04

Current THD=

$\frac{\sqrt{\sum_{n=2}^{\infty} I_{n}{ }^{2}}}{I_{1, r m s}} \approx \frac{\sqrt{0.23^{2}+0.12^{2}+0.05^{2}+0.04^{2}}}{3.59}=0.07=7 \%$
Voltage Plot, Current Plot

Three Phase Voltage-Source Inverter

Three Phase Voltage-Source Inverter

Sinusoidal PWM (SPWM)

Sinusoidal PWM (SPWM)

A triangular carrier wave is generated and compared with each phase.

Sinusoidal PWM (SPWM)

A triangular carrier wave is generated and compared with each phase.

Sinusoidal PWM (SPWM)

Sinusoidal PWM (SPWM)

Vd or 0 voltage is generated at $V_{A N}$ depending on the comparison.

Sinusoidal PWM (SPWM)

Vd or 0 voltage is generated at $V_{A N}$ depending on the comparison.

Sinusoidal PWM (SPWM)

Sinusoidal PWM (SPWM)

Line to line voltage $\left(V_{A B}=V_{A N}-V_{B N}\right)$

Sinusoidal PWM (SPWM)

Line to line voltage ($\left.V_{A B}=V_{A N}-V_{B N}\right)$

Sinusoidal PWM (SPWM)

Harmonics in the line voltage

Sinusoidal PWM (SPWM)

Harmonics in the line voltage

Harmonics at the side bands,
Like the unipolar but starts at mf.

Sinusoidal PWM (SPWM)

Harmonics in the line voltage

Sinusoidal PWM (SPWM)

Harmonics in the line voltage

If mf is small, it is better to use synchronized PWM, and mf should be an odd interger, preferably multiple of 3 to reduce harmonics.

Sinusoidal PWM (SPWM)

Harmonics in the line voltage

Sinusoidal PWM (SPWM)

Harmonics in the line voltage

Table 8-2 Generalized Harmonics of $v_{L L}$ for a Large and Odd m_{f} That Is a Multiple of 3 .

1	0.2	0.4	0.6	0.8	1.0
$m_{f} \pm 2$	0.010	0.037	0.080	0.135	0.195
$m_{f} \pm 4$		0.245	0.367	0.490	0.612
$2 m_{f} \pm 1$	0.116	0.200	0.227	0.192	0.111
$2 m_{f} \pm 5$				0.008	0.020
$3 m_{f} \pm 2$	0.027	0.085	0.124	0.108	0.038
$3 m_{f} \pm 4$		0.007	0.029	0.064	0.096
$4 m_{f} \pm 1$	0.100	0.096	0.005	0.064	0.042
$4 m_{f} \pm 5$			0.021	0.051	0.073
$4 m_{f} \pm 7$				0.010	0.030

Voltage Levels?

Voltage Levels?

Linear Region $\left(m_{a}<1\right)$

Voltage Levels?

Linear Region $\left(m_{a}<1\right)$
$\hat{V}_{A N 1}=m_{a} \frac{V_{d}}{2}$

Voltage Levels?

Linear Region $\left(m_{a}<1\right)$

$$
\begin{aligned}
& \hat{V}_{A N 1}=m_{a} \frac{V_{d}}{2} \\
& V_{l-l, r m s}=\frac{\sqrt{3}}{\sqrt{2}} m_{a} \frac{V_{d}}{2}
\end{aligned}
$$

Voltage Levels?

Linear Region $\left(m_{a}<1\right)$

$$
\begin{aligned}
& \hat{V}_{A N 1}=m_{a} \frac{V_{d}}{2} \\
& V_{l-l, r m s}=\frac{\sqrt{3}}{\sqrt{2}} m_{a} \frac{V_{d}}{2}
\end{aligned}
$$

$$
V_{l-l, r m s}=0.612 V_{d}(\text { max in linear region })
$$

Voltage Levels?

Voltage Levels?

Overmodulation ($m_{a}>1$)

Voltage Levels?

Overmodulation ($m_{a}>1$)
Square-Wave Operation?

Voltage Levels?

Overmodulation ($m_{a}>1$)
Square-Wave Operation?

$$
V_{l-l, r m s}=\frac{\sqrt{3}}{\sqrt{2}} \frac{4}{\pi} m_{a} \frac{V_{d}}{2}
$$

Voltage Levels?

Overmodulation ($m_{a}>1$)
Square-Wave Operation?

$$
\begin{aligned}
V_{l-l, r m s} & =\frac{\sqrt{3}}{\sqrt{2}} \frac{4}{\pi} m_{a} \frac{V_{d}}{2} \\
V_{l-l, r m s} & =0.78 V_{d}
\end{aligned}
$$

Voltage Levels?

Overmodulation ($m_{a}>1$)
Square-Wave Operation?

$$
\begin{aligned}
& V_{l-l, r m s}=\frac{\sqrt{3}}{\sqrt{2}} \frac{4}{\pi} m_{a} \frac{V_{d}}{2} \\
& V_{l-l, r m s}=0.78 V_{d} \\
& V_{l-l, r m s, h}=\frac{0.78}{h} V_{d} \text { for } h=6 n \pm 1
\end{aligned}
$$

Voltage Levels?

Voltage Levels?

You can download this presentation from: keysan.me/ee464

Harici Slaytlar

Push-Pull Inverter

Push-Pull Inverter

Similar to Push-Pull Converter

Push-Pull Inverter

Similar to Push-Pull Converter

But without the rectifying diodes

Push-Pull Inverter

Push-Pull Inverter

Push-Pull Inverter

T1, T2 operates in sequence

Push-Pull Inverter

Push-Pull Inverter

Voltage output can be adjusted by the turns-ratio

Push-Pull Inverter

Voltage output can be adjusted by the turns-ratio

$$
\hat{V}_{o 1}=m_{a} \frac{V_{d}}{n}
$$

Push-Pull Inverter

Advantages?

Push-Pull Inverter

Advantages?

- Only single transistor conduct at a time,

Push-Pull Inverter

Advantages?

- Only single transistor conduct at a time,small voltage drop

Push-Pull Inverter

Advantages?

- Only single transistor conduct at a time,small voltage drop
- Especially important for low voltage applications (e.g. fed from a battery)

Push-Pull Inverter

Advantages?

- Only single transistor conduct at a time,small voltage drop
- Especially important for low voltage applications (e.g. fed from a battery)
- There are a few PV applications as well

Push-Pull Inverter

Advantages?

- Only single transistor conduct at a time,small voltage drop
- Especially important for low voltage applications (e.g. fed from a battery)
- There are a few PV applications as well
- Transistors have common ground (no isolation required for gate drives)

Push-Pull Inverter

Disadvantages?

Push-Pull Inverter

Disadvantages?

- What is the required voltage rating of the transistors?

Push-Pull Inverter

Disadvantages?

- What is the required voltage rating of the transistors?

$$
V_{T}=2 V_{d}
$$

Therefore may not be practical for higher input voltages

Push-Pull Inverter

Disadvantages?

- What is the required voltage rating of the transistors?

$$
V_{T}=2 V_{d}
$$

Therefore may not be practical for higher input voltages

- A good transformer, with high coupling is required (to reduce energy in the leakage inductance)

Switch Utilization in Single Phase Inverters

Switch Utilization in Single Phase Inverters

Ratio of the output power to max. power capacity of the switches

Switch Utilization in Single Phase Inverters

Ratio of the output power to max. power capacity of the switches

Assume highly inductive load, no current harmonics (just the fundamental)

Switch Utilization in Single Phase Inverters

Ratio of the output power to max. power capacity of the switches

Assume highly inductive load, no current harmonics (just the fundamental)
$=\frac{V_{o 1} I_{o, \text { max }}}{q V_{T} I_{T}}$

Switch Utilization in Single Phase Inverters

Ratio of the output power to max. power capacity of the switches

Assume highly inductive load, no current harmonics (just the fundamental)
$=\frac{V_{o 1} I_{o, \text { max }}}{q V_{T} I_{T}}$
Maximum utilization occurs at square wave

Switch Utilization in Single Phase Inverters

Switch Utilization in Single Phase Inverters

Half Bridge Inverter

Switch Utilization in Single Phase Inverters

Half Bridge Inverter
Voltage rating?

Switch Utilization in Single Phase Inverters

Half Bridge Inverter
Voltage rating?

$$
V_{T}=V_{d, \max }
$$

Switch Utilization in Single Phase Inverters

Half Bridge Inverter
Voltage rating?
$V_{T}=V_{d, \max }$
Current rating?

Switch Utilization in Single Phase Inverters

Half Bridge Inverter
Voltage rating?
$V_{T}=V_{d, \max }$
Current rating?
$I_{T}=\sqrt{2} I_{o, \max }$

Switch Utilization in Single Phase Inverters

Switch Utilization in Single Phase Inverters

Half Bridge Inverter
Output Voltage: $V_{o 1, \max }=\frac{4}{\pi \sqrt{2}} \frac{V_{d, \max }}{2}$

Switch Utilization in Single Phase Inverters

Half Bridge Inverter
Output Voltage: $V_{o 1, \max }=\frac{4}{\pi \sqrt{2}} \frac{V_{d, \max }}{2}$
Max. Switch Utilization

Switch Utilization in Single Phase Inverters

Half Bridge Inverter
Output Voltage: $V_{o 1, \max }=\frac{4}{\pi \sqrt{2}} \frac{V_{d, \max }}{2}$
Max. Switch Utilization
$q=2$
$=\frac{1}{2 \pi} \approx 0.16$

Switch Utilization in Full Bridge Inverter

Switch Utilization in Full Bridge Inverter

Voltage, Current Ratings?

Switch Utilization in Full Bridge Inverter

Voltage, Current Ratings?: Same with Half Bridge

Switch Utilization in Full Bridge Inverter

Voltage, Current Ratings?: Same with Half Bridge
$\mathrm{q}=$

Switch Utilization in Full Bridge Inverter

Voltage, Current Ratings?: Same with Half Bridge
$q=4$

Switch Utilization in Full Bridge Inverter

Voltage, Current Ratings?: Same with Half Bridge
$q=4$
Voltage output =

Switch Utilization in Full Bridge Inverter

Voltage, Current Ratings?: Same with Half Bridge
$\mathrm{q}=4$
Voltage output =twice of the half bridge

Switch Utilization in Full Bridge Inverter

Voltage, Current Ratings?: Same with Half Bridge
$\mathrm{q}=4$
Voltage output =twice of the half bridge
Switch utilization=?

Switch Utilization in Full Bridge Inverter

Voltage, Current Ratings?: Same with Half Bridge
$\mathrm{q}=4$
Voltage output =twice of the half bridge
Switch utilization=?
$=\frac{1}{2 \pi} \approx 0.16$

Switch Utilization in Push-Pull Inverter

Switch Utilization in Push-Pull Inverter

Voltage, Current Ratings?

Switch Utilization in Push-Pull Inverter

Voltage, Current Ratings?
$V_{T}=2 V_{d, \max }$

Switch Utilization in Push-Pull Inverter

Voltage, Current Ratings?

$$
\begin{aligned}
& V_{T}=2 V_{d, \max } \\
& I_{T}=\sqrt{2} \frac{I_{o, \max }}{n}
\end{aligned}
$$

Switch Utilization in Push-Pull Inverter

Voltage, Current Ratings?
$V_{T}=2 V_{d, \max }$
$I_{T}=\sqrt{2} \frac{I_{o, \max }}{n}$
Output Voltage: $V_{o 1, \max }=\frac{4}{\pi \sqrt{2}} \frac{V_{d, \max }}{n}$

Switch Utilization in Push-Pull Inverter

Switch Utilization in Push-Pull Inverter

$q=2$

Switch Utilization in Push-Pull Inverter

$q=2$
Switch Utilization

Switch Utilization in Push-Pull Inverter

$q=2$
Switch Utilization
$=\frac{1}{2 \pi} \approx 0.16$

Switch Utilization in Linear Region

Switch Utilization in Linear Region

$=\frac{1}{2 \pi} \frac{\pi}{4} m_{a}=\frac{1}{8} m_{a}$

Switch Utilization in Linear Region

$=\frac{1}{2 \pi} \frac{\pi}{4} m_{a}=\frac{1}{8} m_{a}$
Linear Region
$=0.125$ when $m_{a}=1$

