EE-464 STATIC POWER CONVERSION-II

Midterm Recitation

Ozan Keysan
keysan.me

Office: C-113• Tel: 2107586

Ex. Mohan 10-3

Ex. Mohan 10-3

In a regulated flyback converter with 1:1 turns ratio, $V_{0}=12 \mathrm{~V}, \mathrm{Vd}=12-24 \mathrm{~V}$, Pload is 60 W , and the switching frequency is 200 kHz .

Ex. Mohan 10-3

In a regulated flyback converter with 1:1 turns ratio, $\mathrm{V}_{0}=12 \mathrm{~V}, \mathrm{Vd}=12-24 \mathrm{~V}$, Pload is 60 W , and the switching frequency is 200 kHz .

Calculate the maximum value of the magnetizing inductance Lm that can be used if the converter is always required to operate in a complete demagnetization (i.e. discontinuous conduction mode).

Ex. Mohan 10-3

Ex. Mohan 10-3

1:1 ratio means same as a buck-boost converter

Ex. Mohan 10-3

1:1 ratio means same as a buck-boost converter
Refer to Mohan Section 7.5.2

Ex. Mohan 10-3

1:1 ratio means same as a buck-boost converter

Refer to Mohan Section 7.5.2

$$
\begin{equation*}
I_{o B}=\frac{T_{s} V_{o}}{2 L}(1-D)^{2} \tag{7-47}
\end{equation*}
$$

Figure 7-20 Buck-boost converter: boundary of continuous-discontinuous conduction.

Solution

Solution

1:1 turns ratio, then it is same as a buck converter

Solution

1:1 turns ratio, then it is same as a buck converter
Smallest $I_{O B}$ occurs when V_{d} is min (Read Mohan Sect. 7.5.2)

Solution

1:1 turns ratio, then it is same as a buck converter
Smallest $I_{O B}$ occurs when V_{d} is min (Read Mohan Sect. 7.5.2)

$$
D=\frac{V_{o}}{V_{o}+V_{d}}=\frac{12}{12+12}=0.5
$$

Solution

1:1 turns ratio, then it is same as a buck converter
Smallest $I_{O B}$ occurs when V_{d} is min (Read Mohan Sect. 7.5.2)
$D=\frac{V_{o}}{V_{o}+V_{d}}=\frac{12}{12+12}=0.5$
I_{O} should be calculated for the highest power (60 W)
$I_{O}=\frac{60}{12}=5 A$

Solution

1:1 turns ratio, then it is same as a buck converter
Smallest $I_{O B}$ occurs when V_{d} is min (Read Mohan Sect. 7.5.2)
$D=\frac{V_{o}}{V_{o}+V_{d}}=\frac{12}{12+12}=0.5$
I_{O} should be calculated for the highest power (60 W)
$I_{O}=\frac{60}{12}=5 A$
$I_{O B}=\frac{T_{s} V_{o}(1-D)^{2}}{2 L}=5 A$

Solution

1:1 turns ratio, then it is same as a buck converter
Smallest $I_{O B}$ occurs when V_{d} is min (Read Mohan Sect. 7.5.2)
$D=\frac{V_{o}}{V_{o}+V_{d}}=\frac{12}{12+12}=0.5$
I_{O} should be calculated for the highest power (60 W)
$I_{O}=\frac{60}{12}=5 A$
$I_{O B}=\frac{T_{s} V_{o}(1-D)^{2}}{2 L}=5 A$
$L_{m}=\frac{12(1-0.5)^{2}}{20010^{3} 25}=1.5 \mu H \square$

Ex. Mohan 10-5

Ex. Mohan 10-5

A switch-mode supply with the following specs are designed:
$\mathrm{Vd}=48 \mathrm{~V} \pm 10 \%$,
$V_{0}=5 \mathrm{~V}$,
fs $=100 \mathrm{kHz}$,
Pload=15-50W

Ex. Mohan 10-5

A switch-mode supply with the following specs are designed:
$\mathrm{Vd}=48 \mathrm{~V} \pm 10 \%$,
Vo=5V,
fs=100kHz,
Pload=15-50W
A forward converter is operating in continuous conduction mode with the demagnetizing winding ($\mathrm{N} 3=\mathrm{N} 1$). Assume ideal components (except transformer magnetization)

Ex. Mohan 10-5

Ex. Mohan 10-5

a) Calculate $\mathrm{N} 2 / \mathrm{N} 1$ if the turns ratio is desired to be as small as possible.

Ex. Mohan 10-5

a) Calculate $\mathrm{N} 2 / \mathrm{N} 1$ if the turns ratio is desired to be as small as possible.
b) Calculate the minimum value of filter inductance.

Solution

Solution

$$
N_{3}=N_{2} \rightarrow D_{\max }=0.5 \quad 43.2 \mathrm{~V}<V_{d}<52.8 \mathrm{~V}
$$

Solution

$$
\begin{aligned}
& N_{3}=N_{2} \rightarrow D_{\max }=0.5 \quad 43.2 \mathrm{~V}<V_{d}<52.8 \mathrm{~V} \\
& \frac{V_{o}}{V_{d}}=\frac{N_{2}}{N_{1}} D
\end{aligned}
$$

Solution

$$
\begin{aligned}
& N_{3}=N_{2} \rightarrow D_{\max }=0.5 \quad 43.2 \mathrm{~V}<V_{d}<52.8 \mathrm{~V} \\
& \frac{V_{o}}{V_{d}}=\frac{N_{2}}{N_{1}} D \\
& \frac{V_{o}}{V_{d \min }}=\frac{5}{43.2}=\frac{N_{2}}{N_{1}} 0.5 \rightarrow \frac{N_{2}}{N_{1}}=0.232
\end{aligned}
$$

Solution

$$
\begin{aligned}
& N_{3}=N_{2} \rightarrow D_{\max }=0.5 \quad 43.2 \mathrm{~V}<V_{d}<52.8 \mathrm{~V} \\
& \frac{V_{o}}{V_{d}}=\frac{N_{2}}{N_{1}} D \\
& \frac{V_{o}}{V_{d \min }}=\frac{5}{43.2}=\frac{N_{2}}{N_{1}} 0.5 \rightarrow \frac{N_{2}}{N_{1}}=0.232
\end{aligned}
$$

Let's check for maximum Vd
$\frac{V_{o}}{V_{d \max }}=\frac{N_{2}}{N_{1}} D_{\min } \rightarrow \frac{5}{52.8}=\frac{N_{2}}{N_{1}} D$

Solution

$$
\begin{aligned}
& N_{3}=N_{2} \rightarrow D_{\max }=0.5 \quad 43.2 \mathrm{~V}<V_{d}<52.8 \mathrm{~V} \\
& \frac{V_{o}}{V_{d}}=\frac{N_{2}}{N_{1}} D \\
& \frac{V_{o}}{V_{d \min }}=\frac{5}{43.2}=\frac{N_{2}}{N_{1}} 0.5 \rightarrow \frac{N_{2}}{N_{1}}=0.232
\end{aligned}
$$

Let's check for maximum Vd
$\frac{V_{o}}{V_{d \max }}=\frac{N_{2}}{N_{1}} D_{\text {min }} \rightarrow \frac{5}{52.8}=\frac{N_{2}}{N_{1}} D$
$D=0.408$ Condition satisfied
b) Minimum value of the filter inductance
b) Minimum value of the filter inductance

$$
\begin{aligned}
& \frac{N_{2}}{N_{1}}=0.232 \\
& P_{\min }=15 \mathrm{~W} \rightarrow I_{o m i n}=3 A=I_{L m i n}
\end{aligned}
$$

b) Minimum value of the filter inductance

$$
\begin{aligned}
& \frac{N_{2}}{N_{1}}=0.232 \\
& P_{\min }=15 \mathrm{~W} \rightarrow I_{o m i n}=3 A=I_{L m i n}
\end{aligned}
$$

At the boundary:
$\frac{\left(V_{d} \frac{N_{2}}{N_{1}}-V_{o}\right) D}{2 L_{\min }} t_{o n}=I_{o m i n}$

b) Minimum value of the filter inductance

$$
\begin{aligned}
& \frac{N_{2}}{N_{1}}=0.232 \\
& P_{\min }=15 W \rightarrow I_{o m i n}=3 A=I_{L \min }
\end{aligned}
$$

At the boundary:
$\frac{\left(V_{d} \frac{N_{2}}{N_{1}}-V_{o}\right) D}{2 L_{\min }} t_{o n}=I_{o m i n}$
$V_{d m i n}=43.2 \rightarrow D=0.5 \rightarrow L_{\text {min }}=4.18 \mu H$

b) Minimum value of the filter inductance

$$
\begin{aligned}
& \frac{N_{2}}{N_{1}}=0.232 \\
& P_{\min }=15 W \rightarrow I_{o m i n}=3 A=I_{L \min }
\end{aligned}
$$

At the boundary:
$\frac{\left(V_{d} \frac{N_{2}}{N_{1}}-V_{o}\right) D}{2 L_{\min }} t_{o n}=I_{\text {omin }}$
$V_{d m i n}=43.2 \rightarrow D=0.5 \rightarrow L_{\text {min }}=4.18 \mu H$
$V_{d \max }=52.8 \rightarrow D=0.408 \rightarrow L_{\min }=4.93 \mu H$
Therefore $L_{\text {min }}=4.93 \mu H \approx 5 \mu H$ should be used

Ex. W.Hart 7.2

Ex. W.Hart 7.2

Design a converter to produce and output voltage of 36V from a 3.3V supply. The output current is 0.1 A .

Ex. W.Hart 7.2

Design a converter to produce and output voltage of 36 V from a 3.3V supply. The output current is 0.1 A .

Design for an output ripple voltage of 2%. Include ESR when choosing a capacitor.

Ex. W.Hart 7.2

Design a converter to produce and output voltage of 36V from a 3.3V supply. The output current is 0.1 A .

Design for an output ripple voltage of 2%. Include ESR when choosing a capacitor.

Assume for this problem that the ESR is related to the capacitor value by $r_{c}=10^{-5} / C$.

Ex. W.Hart 7.2

Design a converter to produce and output voltage of 36V from a 3.3V supply. The output current is 0.1 A .

Design for an output ripple voltage of 2%. Include ESR when choosing a capacitor.

Assume for this problem that the ESR is related to the capacitor value by $r_{c}=10^{-5} / C$.

Solution available in the textbook

Ex. W.Hart 7.4

Ex. W.Hart 7.4

A forward converter of Fig. 7-5a has the following parameters:

Ex. W.Hart 7.4

A forward converter of Fig. 7-5a has the following parameters:

- $\mathrm{V}=48 \mathrm{~V}$
- $R=100 \mathrm{hm}$
- Lx $=0.4 \mathrm{mH}, \mathrm{Lm}=5 \mathrm{mH}$
- C=100 uF
- $\mathrm{f}=35 \mathrm{kHz}$
- $\mathrm{N} 1 / \mathrm{N} 2=1.5, \mathrm{~N} 1 / \mathrm{N} 3=1$
. $D=0.4$

Ex. W.Hart 7.4

a) Determine the output voltage, the maximum and minimum currents in $L x$, and the output voltage ripple.

Ex. W.Hart 7.4

a) Determine the output voltage, the maximum and minimum currents in $L x$, and the output voltage ripple.
b) Determine the peak curren in the transformer primary winding. Verify that the magnetizinf current is reset to zero during each switching period.

Solution available in the textbook

Ex. W.Hart 7.4

Ex. W.Hart 7.4

${ }^{i_{2}}$

Ex. W.Hart 8.9

Ex. W.Hart 8.9

Design a bipolar PWM single phase inverter that will produce $75 \mathrm{Vrms}, 60 \mathrm{~Hz}$ output from a 150 Vdc supply.

Ex. W.Hart 8.9

Design a bipolar PWM single phase inverter that will produce $75 \mathrm{Vrms}, 60 \mathrm{~Hz}$ output from a 150 Vdc supply.

Rload=12 Ohm, Lload=60mH. Select the switching frequency such that the current THD is less than 10 \%.

Ex. W.Hart 8.9

Ex. W.Hart 8.9

Ex. W.Hart 8.9

Ex. W.Hart 8.9

Table 8-3 Normalized Fourier Coefficients V_{n} / V_{dc} for Bipolar PWM

	$\boldsymbol{m}_{\boldsymbol{a}}=\mathbf{1}$	$\mathbf{0 . 9}$	$\mathbf{0 . 8}$	$\mathbf{0 . 7}$	$\mathbf{0 . 6}$	$\mathbf{0 . 5}$	$\mathbf{0 . 4}$	$\mathbf{0 . 3}$	$\mathbf{0 . 2}$	$\mathbf{0 . 1}$
$n=1$	1.00	0.90	0.80	0.70	0.60	0.50	0.40	0.30	0.20	0.10
$n=m_{f}$	0.60	0.71	0.82	0.92	1.01	1.08	1.15	1.20	1.24	1.27
$n=m f \pm 2$	0.32	0.27	0.22	0.17	0.13	0.09	0.06	0.03	0.02	0.00

Solution available in the textbook and also in the YouTube Channel

You can download this presentation from: keysan.me/ee464

