EE-464 STATIC POWER CONVERSION-II

Other PWM Techniques

Ozan Keysan
keysan.me

Office: C-113 • Tel: 2107586

Hysteresis (Bang-Bang) PWM

Hysteresis (Bang-Bang) PWM

You already implemented in the first semester

Figure 2.2. Buck Converter with Hvsteretic Current-Mode Control: A control sig-

Hysteresis (Bang-Bang) PWM

If your current is higher than your reference, reduce the current (switch off), if not increase the current (Switch ON)

Hysteresis (Bang-Bang) PWM

For an inverter, just change your reference current to a sinusoidal waveform instead of a constant reference.

Hysteresis (Bang-Bang) PWM

Hysteresis (Bang-Bang) PWM
. The switching frequency is varying

Hysteresis (Bang-Bang) PWM

- The switching frequency is varying
. Difficult to design filter (because of varying fs)

Hysteresis (Bang-Bang) PWM

- The switching frequency is varying
. Difficult to design filter (because of varying fs)
- Can induce side-band harmonics

Hysteresis (Bang-Bang) PWM

- The switching frequency is varying
. Difficult to design filter (because of varying fs)
. Can induce side-band harmonics
. Simple control and implementation

Hysteresis (Bang-Bang) PWM

Field Oriented Control (FOC) in Electrical Machines

- What is FOC?
- Field oriented Control of PM Motors

How to aim to a moving target?

How to aim to a moving target?

Some Useful Mathematical Tools

Some Useful Mathematical Tools

. Clarke Transformation
. Park Transformation

Clarke Transformation

(a-b-c) to $\alpha \beta$ Transformation
From three-phase to two orthogonal phase transformation

Clarke Transformation

(a-b-c) to $\alpha \beta$ Transformation

From three-phase to two orthogonal phase transformation

Main Idea: In a balanced three-phase system,
$I_{a}+I_{b}+I_{c}=0$ so there is redundant information and system can be reduced to two variables.

How do you define the resultant (black) phasor?

Clarke Transformation

Clarke Transformation

$$
i_{\alpha \beta}(t)=\frac{2}{3}\left[\begin{array}{ccc}
1 & -\frac{1}{2} & -\frac{1}{2} \\
0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2}
\end{array}\right]\left[\begin{array}{c}
i_{a}(t) \\
i_{b}(t) \\
i_{c}(t)
\end{array}\right]
$$

Park Transformation in Space

i.e. Interstellar - Docking Scene

Park Transformation

Park Transformation

From stationary frame to rotationary frame

Park Transformation

From stationary frame to rotationary frame

Instead of dealing with sinusoidal signals, just use the magnitudes.

Park Transformation

From stationary frame to rotationary frame
Instead of dealing with sinusoidal signals, just use the magnitudes.

When reconstructing signals use the rotor position information

Park Transformation

Torque- and flux producing currents
(from a stationary reference frame)

Park Transformation

Park Transformation

Park Transformation

$$
I_{d}=I_{\alpha} \cos (\theta)+I_{\beta} \sin (\theta)
$$

Park Transformation

$$
\begin{aligned}
& I_{d}=I_{\alpha} \cos (\theta)+I_{\beta} \sin (\theta) \\
& I_{q}=I_{\beta} \cos (\theta)-I_{\alpha} \sin (\theta)
\end{aligned}
$$

Park Transformation

$$
\begin{aligned}
& I_{d}=I_{\alpha} \cos (\theta)+I_{\beta} \sin (\theta) \\
& I_{q}=I_{\beta} \cos (\theta)-I_{\alpha} \sin (\theta)
\end{aligned}
$$

Reference Frames

Clarke and Park Transformations

Torque and Flux Control

Id: Proportional to flux in the air-gap
Iq: Proportional to torque generated

Inverse Transforms

Inverse Transforms

Required to apply reference voltage and current waveforms (sinusoidals)

Inverse Transforms

Required to apply reference voltage and current waveforms (sinusoidals)
. Inverse Park Transform
. Inverse Clarke Transform

Inverse Park Transform

Inverse Park Transform

From rotation frame to stationary frame

Inverse Park Transform

From rotation frame to stationary frame

$$
I_{\alpha}=I_{d} \cos (\theta)-I_{q} \sin (\theta)
$$

Inverse Park Transform

From rotation frame to stationary frame

$$
\begin{aligned}
& I_{\alpha}=I_{d} \cos (\theta)-I_{q} \sin (\theta) \\
& I_{\beta}=I_{q} \cos (\theta)+I_{d} \sin (\theta)
\end{aligned}
$$

Inverse Clarke Transform

From two-axis orthogonal plane to 3-phase stationary frame.

$$
\begin{aligned}
& \alpha, \beta \rightarrow \mathbf{a}, \mathbf{b}, \mathbf{c} \\
& i_{a}=i_{\alpha} \\
& i_{b}=-\frac{1}{2} \cdot i_{\alpha}+\frac{\sqrt{3}}{2} \cdot i_{\beta} \\
& i c=-\frac{1}{2} \cdot i_{\alpha}-\frac{\sqrt{3}}{2} \cdot i_{\beta}
\end{aligned}
$$

Whole Workflow

Classical Vector Control Diagram

Vector Control in PMSM

Vector Control in Induction Motors

Summary

Further Reading

Vector Control for Dummies

What is Field Oriented Control?
Field Oriented Control
Field Oriented Control of AC Motors
Sensorless PMSM Field Oriented Control
Space Vector PWM

3-Phase Two-Level Inverter

3-Phase Two-Level Inverter

Anti-parallel diodes are not shown.

3-Phase Two-Level Inverter

Each leg has two positions:

3-Phase Two-Level Inverter

Each leg has two positions: top switch closed (1)

3-Phase Two-Level Inverter

Each leg has two positions:

3-Phase Two-Level Inverter

Each leg has two positions: bottom switch closed (0)

Voltage Vectors

Voltage Vectors

$$
\begin{aligned}
& 000-v_{0} \text { (zero vector) } \\
& \left.001-v_{1} \text { (Phase }+\mathrm{U}\right) \\
& \left.010-v_{2} \text { (Phase }+\mathrm{V}\right) \\
& 011-v_{3} \text { (Phase -W) } \\
& \left.100-v_{4} \text { (Phase }+\mathrm{W}\right) \\
& \left.101-v_{5} \text { (Phase }-\mathrm{V}\right) \\
& 110-v_{6} \text { (Phase -U) } \\
& 111-v_{7} \text { (zero vector) }
\end{aligned}
$$

Voltage Vectors:Vo

Voltage Vectors: V1

Voltage Vectors: V2

Voltage Vectors: V3

Voltage Vectors: V4

Voltage Vectors: V5

Voltage Vectors: V6

Voltage Vectors: V7

Square Wave Operation

BLDC Drive with square wave

What about the vectors in between?

What about the vectors in between?

What about the vectors in between?

What about the vectors in between?

Voltage Synthesizing

Voltage Synthesizing

PWM Generation

PWM Generation

Switching Sequence: 000-001-011-111

PWM Generation

Switching Sequence:

- Zero Vector (000)

PWM Generation

Switching Sequence:

- Zero Vector (000)
. Basic Vector (i.e. 001)

PWM Generation

Switching Sequence:

- Zero Vector (000)
- Basic Vector (i.e. 001)
. Basic Vector (i.e. 011)

PWM Generation

Switching Sequence:

- Zero Vector (000)
- Basic Vector (i.e. 001)
. Basic Vector (i.e. 011)
. Zero Vector (i.e. 111)

PWM Generation

Switching Sequence:

- Zero Vector (000)
- Basic Vector (i.e. 001)
. Basic Vector (i.e. 011)
- Zero Vector (i.e. 111)

Only one switch position is changed at each step!

PWM Generation

SPWM vs SVPWM

SPWM vs SVPWM

Phase Voltages

SPWM vs SVPWM

SPWM vs SVPWM

- Space Vector PWM generates less harmonic distortion

SPWM vs SVPWM
. Space Vector PWM generates less harmonic distortion

- Space Vector PWM utilizes input voltage more
$1 / 2$ vs $1 / \sqrt{3}$ (15% more)

What is the max. possible phase voltage with SPWM (Sinusoidal PWM)?

What is the max. possible phase voltage with SPWM (Sinusoidal PWM)?

What is the max. possible phase voltage with SPWM (Sinusoidal PWM)?

What is the max. possible phase voltage with SPWM (Sinusoidal PWM)?

What is the max. possible phase voltage with SPWM (Sinusoidal PWM)?

The inverter is connected to $400 V_{l-l}$ grid with a 3-ph diode rectifier:

What is the max. possible phase voltage with SPWM (Sinusoidal PWM)?

The inverter is connected to $400 V_{l-l}$ grid with a 3-ph diode rectifier:

$V_{D C}=$

What is the max. possible phase voltage with SPWM (Sinusoidal PWM)?

The inverter is connected to $400 V_{l-l}$ grid with a 3-ph diode rectifier:

$$
V_{D C}=\frac{3 \sqrt{2}}{\pi} V_{l-l}
$$

What is the max. possible phase voltage with SPWM (Sinusoidal PWM)?

The inverter is connected to $400 V_{l-l}$ grid with a 3-ph diode rectifier:

$$
V_{D C}=\frac{3 \sqrt{2}}{\pi} V_{l-l}=1.35 V_{l-l}=540 V
$$

What is the max. possible phase voltage with SPWM (Sinusoidal PWM)?

What is the max. possible phase voltage with SPWM (Sinusoidal PWM)?

What is the max. possible phase voltage with SPWM (Sinusoidal PWM)?

Maximum motor phase voltage:

What is the max. possible phase voltage with SPWM (Sinusoidal PWM)?

Maximum motor phase voltage:
$V_{\text {phase-rms }}=\frac{V_{D C}}{2 \sqrt{2}}=190 \mathrm{~V}$
which is quite low for standard motors!

How can you increase the output voltage beyond the DC-link voltage limit?

How can you increase the output voltage beyond the DC-link voltage limit?

IGOT KIGKED OUT OF HOQWIRTS

Third Harmonic Injection (THIPWM)

Third Harmonic Injection (THIPWM)

A sinusoidal reference voltage output:

Third Harmonic Injection (THIPWM)

Assume you apply a waveform like that:

which composes of the fundamental and a third-harmonic component

Third Harmonic Injection (THIPWM)

Such that $V=\frac{V_{D C}}{2}$ at $\pi / 3$

Third Harmonic Injection (THIPWM)

What is the phase voltage?

Third harmonic cancels itself (common-mode voltage), the potential of the neutral votlage is oscillating, but the winding doesn't see this change and observe a pure sinusoidal.

Third Harmonic Injection (THIPWM)

What is the phase voltage?
THIPWM: $V_{\text {phase-rms }}=\frac{V_{D C}}{\sqrt{6}}=220 \mathrm{~V}$

Third Harmonic Injection (THIPWM)

What is the phase voltage?
THIPWM: $V_{\text {phase-rms }}=\frac{V_{D C}}{\sqrt{6}}=220 \mathrm{~V}$
\%15 higher than SPWM
$\left(V_{\text {phase }-r m s}=\frac{V_{D C}}{2 \sqrt{2}}=190 \mathrm{~V}\right)$

Third Harmonic Injection (THIPWM)

How about SVPWM?

How about SVPWM?

What is the phase voltage for one of the SVPWM vectors?

How about SVPWM?

What is the phase voltage for one of the SVPWM vectors?
$\hat{V}_{n}=\frac{2}{3} V_{D C}$

How about SVPWM?

What is the phase voltage for one of the SVPWM vectors?
$\hat{V}_{n}=\frac{2}{3} V_{D C}$
What if two adjacent vectors are applied for $\% 50, \% 50$?

How about SVPWM?

What is the phase voltage for one of the SVPWM vectors?
$\hat{V}_{n}=\frac{2}{3} V_{D C}$
What if two adjacent vectors are applied for $\% 50, \% 50$?
$=\frac{2}{3} V_{D C} \frac{\sqrt{3}}{2}=\frac{1}{\sqrt{3}} V_{D C}$
Same with THIPWM: $V_{p h, r m s}=\frac{1}{\sqrt{6}} V_{D C}=220 \mathrm{~V}$

How about SVPWM?

Magnitude comparison of SPWM and SVPWM

Magnitude comparison of SPWM and SVPWM
Space Vector (SVPWM)
Max. $V_{l-l, r m s}=\sqrt{3} \frac{\frac{V_{d c}}{\sqrt{3}}}{\sqrt{2}}$

Magnitude comparison of SPWM and SVPWM
Space Vector (SVPWM)
Мах. $V_{l-l, r m s}=\sqrt{3} \frac{\frac{V_{d c}}{\sqrt{3}}}{\sqrt{2}}=\frac{V_{d c}}{\sqrt{2}}=0.707 V_{d c}$

Magnitude comparison of SPWM and SVPWM
Space Vector (SVPWM)
Мах. $V_{l-l, r m s}=\sqrt{3} \frac{\frac{V_{d c}}{\sqrt{3}}}{\sqrt{2}}=\frac{V_{d c}}{\sqrt{2}}=0.707 V_{d c}$
Sinusoidal (SPWM)

Magnitude comparison of SPWM and SVPWM
Space Vector (SVPWM)
Max. $V_{l-l, r m s}=\sqrt{3} \frac{\frac{V_{d c}}{\sqrt{3}}}{\sqrt{2}}=\frac{V_{d c}}{\sqrt{2}}=0.707 V_{d c}$
Sinusoidal (SPWM)
Max. $V_{l-l, r m s}=\sqrt{3} \frac{\frac{V_{d c}}{2}}{\sqrt{2}}$

Magnitude comparison of SPWM and SVPWM
Space Vector (SVPWM)
Max. $V_{l-l, r m s}=\sqrt{3} \frac{\frac{V_{d c}}{\sqrt{3}}}{\sqrt{2}}=\frac{V_{d c}}{\sqrt{2}}=0.707 V_{d c}$
Sinusoidal (SPWM)
Max.
$V_{l-l, r m s}=\sqrt{3} \frac{\frac{V_{d c}}{2}}{\sqrt{2}}=\frac{\sqrt{3} V_{d c}}{2 \sqrt{2}}=0.612 V_{d c}$
SVPWM is \% 15 higher than SPWM

You can download this presentation from: keysan.me/ee464

