ORTA DOĒU TEKNIK ÜNiversitesi
MIDDLE EAST TECHNICAL UNIVERSITY

ME 208 DYNAMICS

Dr. Ergin TÖNÜK

Department of Mechanical Engineering
Graduate Program of Biomedical Engineering

$$
\begin{gathered}
\frac{\text { tonuk@metu.edu.tr }}{\text { http://tonuk.me.metu.edu.tr }}
\end{gathered}
$$

Differences between 2-D \& 3-D Dynamics

Angular displacement (rotation) $\Delta \theta$ is unique!

Orientation of a rigid body may be obtained using a sequence of rotations which is not unique.

Figure from: "Effect of Rotation Sequence on Evaluation of Joint Angles about Anatomical Axes in Gait Analyses" by Metin Biçer, Sebahat Aydil, Ergin Tönük, Güneş Yavuzer

Differences between 2-D \& 3-D Dynamics

Angular velocity:
$\vec{\omega}=\omega \hat{k}=\dot{\theta} \hat{k}$
Only magnitude may change, direction is fixed. $d \vec{\omega}$
$\frac{d \widehat{\omega}}{d t}=\dot{\omega} \hat{k}=\alpha \hat{k}$

Angular velocity:
$\vec{\omega}=\omega_{x} \hat{\imath}+\omega_{y} \hat{\jmath}+\omega_{z} \hat{k}$
Not only magnitude but direction may change as well.

$$
\frac{d \vec{\omega}}{d t}=\dot{\omega}\left(\frac{\vec{\omega}}{\omega}\right)+\omega \frac{d}{d t}\left(\frac{\vec{\omega}}{\omega}\right)
$$

Differences between 2-D \& 3-D Dynamics

Addition Theorem for Angular Velocity

$\omega_{3}=\omega_{2}+\omega_{3 / 2}$

$$
\vec{\omega}_{3}=\vec{\omega}_{2}+\vec{\omega}_{3 / 2}
$$

Differences between 2-D \& 3-D Dynamics

Transformation of a Time Derivative

 (Transport or Coriolis Theorem)$$
\left(\frac{d \overrightarrow{\vec{V}}}{d t}\right)_{X-Y}=\left(\frac{d \vec{V}}{d t}\right)_{x-y}+\vec{\omega} \times \vec{V}
$$

$$
\text { Let } \vec{V}=\vec{\omega}
$$

$$
\begin{aligned}
& \left(\frac{d \vec{\omega}}{d t}\right)_{X-Y}=\left(\frac{d \vec{\omega}}{d t}\right)_{x-y}+\vec{\omega} \times \vec{\omega} \quad\left(\frac{d \vec{\omega}}{d t}\right)_{X-Y}=\left(\frac{d \vec{\omega}}{d t}\right)_{X-y}+\vec{\omega} \times \vec{\omega} \\
& \left(\frac{d \vec{\omega}}{d t}\right)_{X-Y}=\left(\frac{d \vec{\omega}}{d t}\right)_{x-y}+\omega \hat{k} \times \omega \hat{k} \\
& \left(\frac{d \vec{\omega}}{d t}\right)_{X-Y}=\left(\frac{d \vec{\omega}}{d t}\right)_{x-y}
\end{aligned}
$$

Differences between 2-D \& 3-D Dynamics

Angular Acceleration

$$
\begin{aligned}
& \left(\frac{d \vec{\omega}_{3}}{d t}\right)_{X-Y}=\left(\frac{d \vec{\omega}_{2}}{d t}\right)_{X-Y}+ \\
& \left(\frac{d \vec{\omega}_{3 / 2}}{d t}\right)_{x-y}+\widetilde{\omega}_{2} \times \vec{\omega}_{3 / 2} \\
& \vec{\omega}_{i}=\omega_{i} \hat{0}
\end{aligned}
$$

$$
\left(\frac{d \vec{\omega}_{3}}{d t}\right)_{X-Y}=\left(\frac{d \vec{\omega}_{2}}{d t}\right)_{X-Y}+
$$

$$
\left(\frac{d \vec{\omega}_{3 / 2}}{d t}\right)_{x-y}+\vec{\omega}_{2} \times \vec{\omega}_{3 / 2}
$$

Differences between 2-D \& 3-D Dynamics

Angular Acceleration

$$
\vec{\alpha}_{3}=\vec{\alpha}_{2}+\vec{\alpha}_{3 / 2}
$$

$$
\vec{\alpha}_{3}=\vec{\alpha}_{2}+\vec{\alpha}_{3 / 2}+\vec{\omega}_{2} \times \vec{\omega}_{3 / 2}
$$

The gyroscopic acceleration!

Differences between 2-D \& 3-D Dynamics

Angular Momentum Change

$\dot{\vec{H}}_{G}=\frac{d}{d t}\left|\vec{H}_{g}\right| \hat{k}$
Change in angular momentum is due to change in its magnitude only. The direction is fixed!
$\dot{\vec{H}}_{G}=\frac{d}{d t}\left|\vec{H}_{g}\right| \frac{\vec{H}_{g}}{\left|\vec{H}_{g}\right|}+\left|\vec{H}_{g}\right| \frac{d}{d t}\left(\frac{\vec{H}_{g}}{\left|\vec{H}_{g}\right|}\right)$
Change in angular momentum is due to change in its magnitude and due to change in its direction which is not fixed anymore!

Lectures by Walter Lewin
https://www.youtube.com/watch?v=XPUuF_dECVI

Problems on Kinematics of Rigid Bodies

The frictional resistance to the rotation of a flywheel consists of a retardation due to air friction which varies as the square of the angular velocity and a constant frictional retardation in the bearing. As a result the angular acceleration of the flywheel while it is allowed to coast is given by $\alpha=-K-k \omega^{2}$, where K and k are two positive constants. Determine an expression for the time required for the flywheel to come to rest from an initial angular velocity ω_{0}.

Since

$$
\alpha=\alpha(\omega)
$$

we can utilize

$$
\alpha=\frac{d \omega}{d t}
$$

$$
d t=\frac{d \omega}{-K-k \omega^{2}}
$$

$$
\int_{0}^{t} d t=\int_{\omega_{0}}^{0} \frac{d \omega}{-K-k \omega^{2}}
$$

$$
t=\frac{1}{\sqrt{k K}} \arctan \left(\omega_{0} \sqrt{\frac{k}{K}}\right)
$$

Rotation of the slotted bar OA is controlled by the lead screw that imparts a horizontal velocity v to collar C. Pin P is attached to the collar. Determine the angular velocity $\omega_{O A}$ of bar OA in terms of v and the displacement x .

$$
\begin{aligned}
& \omega_{O A}=\dot{\theta} \\
& \tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{x}{h} \\
& \frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{2} \theta} \dot{\theta}=\frac{\dot{x}}{h}, \dot{x}=v \\
& \cos \theta=\frac{h}{\sqrt{x^{2}+h^{2}}} \\
& \dot{\theta}=\frac{x^{2}+h^{2}}{h^{3}} v
\end{aligned}
$$

The figure illustrates a commonly used quickreturn mechanism which produces a slow cutting stroke of the tool (attached to D) and a rapid return stroke. If the driving crank OA is turning at the constant rate $\dot{\theta}=3 \mathrm{rad} / \mathrm{s}$, determine the magnitude of the velocity of point B for the instant when $\theta=30^{\circ}$. Also propose how you would find \vec{v}_{D} by ICZV.

$$
\begin{aligned}
& \vec{v}_{A}=\vec{v}_{P}+\vec{v}_{A / P} \\
& \vec{v}_{A} \perp|O A| \\
& \vec{v}_{P} \perp|C B| \\
& \vec{v}_{P / A} \text { is along the slot } \\
& \vec{v}_{A}=0.1 * 3(\sin \theta \hat{\imath}-\cos \theta \hat{\jmath}) \\
& \omega_{C B}=\frac{v_{P}}{|C P|}
\end{aligned}
$$

$$
\begin{aligned}
& v_{B}=|C B| \omega_{C B} \\
& \omega_{B D}=\frac{v_{B}}{|B C|} \\
& v_{D}=\left|D I C Z V_{B D}\right| \omega_{B D}
\end{aligned}
$$

The crank OA of the four-bar linkage is driven at a constant counterclockwise angular velocity $\omega_{0}=10$ rad/s. Determine the expressions for angular velocities and accelerations of rods 3 and 4 for any θ.

$$
\begin{aligned}
& \vec{v}_{B}=\vec{v}_{A}+\vec{v}_{B / A} \\
& \vec{v}_{A}=\omega_{0} \hat{k} \times \vec{r}_{A / O} \\
& \vec{r}_{A / O}=|O A|(\cos \theta \hat{\imath}+\sin \theta \hat{J}) \\
& \vec{v}_{B}=\omega_{4} \hat{k} \times \vec{r}_{B / C} \\
& \vec{v}_{B / A}=\omega_{3} \hat{k} \times \vec{r}_{B / A} \\
& \omega_{4} \hat{k} \times \vec{r}_{B / C}=\omega_{0} \hat{k} \times \vec{r}_{A / O}+\omega_{3} \hat{k} \times \vec{r}_{B / A} \\
& \vec{a}_{B}=\vec{a}_{A}+\vec{a}_{B / A} \\
& \vec{a}_{A}=\alpha_{0} \hat{k} \times \vec{r}_{A / O}-\omega_{0}{ }^{2} \vec{r}_{A / O} \\
& \vec{a}_{B}=\alpha_{4} \hat{k} \times \vec{r}_{B / /}-\omega_{4}{ }^{2} \vec{r}_{B / C} \\
& \vec{a}_{B / A}=\alpha_{3} \hat{k} \times \vec{r}_{B / A}-\omega_{3}{ }^{2} \vec{r}_{B / A} \\
& \alpha_{4} \hat{k} \times \vec{r}_{B / C}-\omega_{4}^{2} \vec{r}_{B / C} \\
& =\alpha_{0} \hat{k} \times \vec{r}_{A / O}-\omega_{0}{ }^{2} \vec{r}_{A / O}+\alpha_{3} \hat{k} \times \vec{r}_{B / A}-\omega_{3}{ }^{2} \vec{r}_{B / A}
\end{aligned}
$$

