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ME 208 Dynamics, 2-D Kinematics of Particle & Rigid Body is a must

ME 301 Theory of Machines I (or equivalent), Kinematics is a must

ME 431 Kinematic Synthesis of Mechanisms (or equivalent) is strongly

recommended

Burmester’s theory [Ludwig Burmester (1840–1927)] for finitely separated position

synthesis, circle point curve (K) and center point curve (M)]

Graduate level mathematics, complex number algebra, and geometry is

strongly recommended

An interest to advanced planar kinematics in the graduate level is

recommended

Course Requirements
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ME 519 KINEMATIC ANALYSIS OF MECHANISMS

Fall 2020 Course Policy (Online Teaching)

Course Instructor E-mail

Dr. Ergin TÖNÜK tonuk@metu.edu.tr

Course Grading (Tentative)

Midterm (25%), homework assignments (20%) term project (25%), final exam

(30%).
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Course Web Site

https://odtuclass.metu.edu.tr/

Examinations

The dates of all examinations will be arranged and announced by the Department

Make-up Examinations

Make-up examinations may be given to those with valid excuses approved by the

Department. If you are eligible to take any of the make-up examinations, you must report

to your course instructor within one week after the regular exam date. Expect a harder

exam compared to the regular one.

Course Content (tentative)

1. Introduction & Review

2. Canonical Representation of Plane Motion

3. Curvature Theory: Infinitesimal Plane Motion

4. Cubic of Stationary Curvature

What to Expect

This is an advanced kinematics course. You will definitely need kinematics part of ME

301 Theory of Machines I. If you have already attended ME 431 Kinematic Synthesis of

Mechanisms you would appreciate the analogy between finitely separated positions of ME

431 and infinitesimally separated positions of ME 519. Although the course title contains

the word analysis we will use analysis methods to synthesize (i.e. design) planar

mechanisms. There may be some analysis of spatial mechanisms like 3-D four-bar and

slider-crank at the end if time permits.



0. Introduction & Review1

1. Canonical Representation of Plane Motion2

2. Curvature Theory: Infinitesimal Plane Motion2

3. Cubic of Stationary Curvature2

Course Content (Tentative)
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Based on:

1 Söylemez Eres, Unpublished Lecture Notes on ME 431

2 Söylemez Eres, Unpublished Lecture Notes on ME 519



• It is a group of rigid bodies (links) connected to each

other by rigid kinematic pairs (joints) to transmit force

and motion.

• It is a kinematic chain where one of the links is fixed.

• A mechanical machine is defined as a combination of

resistant bodies so arranged that by their means the

mechanical forces of nature can be compelled to do work

accompanied by certain determinate motion1.

Mechanisms are the basic building blocks of mechanical

machines. A machine is designed for a specific task using

appropriate mechanisms.

0. Introduction and Review

Mechanism

ME 519 Kinematic Analysis of Mechanisms

1 Reulaeaux, Kinematics of Machinery, 1876



a. Functional Synthesis: Determination of candidate

mechanisms that can realize a set of given (or implied)

functional requirements.

b. Type Determination: Investigation of known mechanisms

for their topological characteristics.

c. Kinematic Analysis: Determination of kinematic

characteristics (position, velocity and acceleration) of a

known mechanism.

d. Kinematic Synthesis: Determination of mechanism

parameters (mostly link lengths) to realize a given

motion (position, velocity and/or acceleration) for a

mechanism whose topological characteristics are known.

Kinematics of Mechanisms
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1. Multiple (Finitely Separated) Position Synthesis: Locate key geometric loci like
revolute joints (on a circular path) or prismatic joints (on a straight path) using
the kinematics of the required motion. Recall that you have a finite number of
design parameters so you cannot (mostly) do the design for the entire (i.e.
infinitely many) positions, a continuous path or function. This leads to
Burmester’s theory (ME 431).

2. Infinitesimally Separated Position/Order Synthesis: Order approximation of a
mechanism existing at a point. For the real finite motion around the
neighborhood of the design position, the motion is matched to the desired
motion as much as possible. This leads to curvature theory (ME 519)

3. Optimization Synthesis: It involves minimizing or maximizing an objective
function so that the desired motion is “best” matched. As a simple example,
recall Chebyshev spacing for function synthesis and manually relocation of
precision points in ME 431.

4. “Best” Match from a Catalogue or a Database: An extensive catalogue or
database having many possible mechanisms is searched by a human expert,
artificial intelligence, expert system, machine learning etc. for the “best” match.
Some ancient printed catalogs are:
• Hrones & Nelson, “Analysis of the four-bar linkage; its application to the synthesis of

mechanisms”, Technology Press of the Massachusetts Institute of Technology, and Wiley,
New York, 1951, TJ183.H7.

• Chironis, “Machine devices and instrumentation: mechanical, electromechanical, hydraulic,
thermal, pneumatic, pyrotechnic, photoelectric and optical”, New York, McGraw-Hill 1966,
TJ213 C532.

• (Sclater &) Chironis, “Mechanisms and mechanical devices sourcebook”, McGraw-Hill 1965,
(2001, 2007) TJ181.C4 (.S28 2001, 2007).

• Artobolevskii, “Mechanisms in modern engineering design; a handbook for engineers,
designers, and inventors”, Mir Publishers, 1975-1980, TJ181.A7813 (7 Volumes!)

Four Methods of Dimensional Mechanism Synthesis
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: Degree of freedom of the unconstrained bodies in the
mechanism space

ℓ: Number of links of the mechanism (including fixed link)

j: Number of joints of the mechanism (ternary, quarternary, etc. joints!)

fi: Degree of freedom of ith joint

F: Degree of freedom of the mechanism

𝐹 = 𝜆 ℓ − 𝑗 − 1 +෍

𝑖=1

𝑗

𝑓𝑖

Remember exceptions!
𝐹 > 0 mechanism requires F actuations for kinematically deterministic motion.

#of actuators < F: Under-actuation, motion is determined by forces (typical examples are car differential
and safety stops).

𝐹 = 0 structure (immobile) unless has special dimensions.

𝐹 < 0 over-constraint (number of “redundant” constraints is |F|) and immobile
unless has special dimensions (also forces cannot be determined unless equations of
equilibrium/motion are complemented by |F| number of equations relating
deformations of the links).

Degree of Freedom of Mechanisms
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Derivation:

In planar motion ℓ links with no joints has 𝐹 = 3 ℓ − 1

k1 joints (revolute & prismatic) constrain 2 freedoms

k2 joints (cylinder in slot) constrain 1 freedom

𝐹 = 3 ℓ − 1 − 2𝑘1 − 𝑘2
Kutzbach formula!

Similarly in 3-D space:

𝐹 = 6 ℓ − 1 − 5𝑘1 − 4𝑘2 − 3𝑘3 − 2𝑘4 − 𝑘5
Replace 3 and 6 in the above equation with  

Constraints imposed by ith joint is 𝜆 − 𝑓𝑖

Constraints imposed by all joints σ𝑖=1
𝑗

𝜆 − 𝑓𝑖 = 𝜆𝑗 − σ𝑖=1
𝑗

𝑓𝑖

Then 𝐹 = 𝜆 ℓ − 1 − 𝜆𝑗 − σ𝑖=1
𝑗

𝑓𝑖

Simplification yields 𝐹 = 𝜆 ℓ − 𝑗 − 1 + σ𝑖=1
𝑗

𝑓𝑖

Degree of Freedom of Mechanisms
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Aranhold-Kennedy Theorem: In planar motion the instant

centers of any three links (whether they are connected by a

joint or not) lay on a straight line.

The number of instant centers of a mechanism having ℓ

links is 𝑁 =
ℓ ℓ−1

2

The instant center is denoted by 𝐼𝑖𝑗 and this point is

momentarily coincident on links i and j (momentarily has

zero relative velocity). If one of i or j is 1 then it is the

absolute instant center with zero absolute velocity.

Otherwise the relative velocity of this point with respect to

link i (or j) on link j (or i) is momentarily zero. Remember we

may consider links as infinite planes.

Instant Centers in Plane Motion
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Instant Centers of Four-Bar
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I12

https://ocw.metu.edu.tr/pluginfile.php/1845/mod_resource/content/1/ch5/5-1.htm



Instant Centers of Four-Bar
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I13

I12

I12 I23 → I13

I14 I34 → I13



Instant Centers of Four-Bar
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I13

I24

I12 I14 → I24

I23 I34 → I24

𝑁 =
ℓ ℓ − 1

2
=
4 4 − 1

2
= 6



Instant Centers of a Multi-Loop Mechanism
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2

3

4

5

6

Number of instant centers:

𝑁 =
ℓ ℓ − 1

2
=
6 6 − 1

2
= 15



Instant Centers of a Multi-Loop Mechanism
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I12

2

3

4

5

6

Obvious instant centers:

I23
I34

I14

I35

I16

I56


I56




Instant Centers of a Multi-Loop Mechanism
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I12

2

3

4

5

6

Determination of other instant centers:

• Write numbers up to ℓ

I23
I34

I14

I35

I16

I56


1 2

3

45

6

I56




Instant Centers of a Multi-Loop Mechanism
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I12

2

3

4

5

6

Determination of other instant centers:
• Write numbers up to ℓ

• Connect the numbers with a line for known instant centers

I23
I34

I14

I35

I16

I56


1 2

3

45

6

I56




Instant Centers of a Multi-Loop Mechanism
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I12

2

3

4

5

6

Determination of other instant centers:
• Write numbers up to ℓ

• Connect the numbers with a line for known instant centers

• I12, I23 and I14, I34 yields I13

I23
I34

I14

I35

I16

I56


1 2

3

45

6

I13

I56




Instant Centers of a Multi-Loop Mechanism
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I12

2

3

4

5

6

Determination of other instant centers:
• Write numbers up to ℓ

• Connect the numbers with a line for known instant centers

• I12, I23 and I14, I34 yields I13

• I23, I34 and I12, I14 yields I24

I23
I34

I14

I35

I16

I56


1 2

3

45

6

I13

I24

I56




Instant Centers of a Multi-Loop Mechanism
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I12

2

3

4

5

6

Determination of other instant centers:
• Write numbers up to ℓ

• Connect the numbers with a line for known instant centers

• I12, I23 and I14, I34 yields I13

• I23, I34 and I12, I14 yields I24

• I13, I35 and I16, I56 yields I15

I23
I34

I14

I35

I16

I56


1 2

3

45

6

I13

I24

I56


I15

I56




Instant Centers of a Multi-Loop Mechanism
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I12

2

3

4

5

6

Determination of other instant centers:
• Write numbers up to ℓ

• Connect the numbers with a line for known instant centers

• I12, I23 and I14, I34 yields I13

• I23, I34 and I12, I14 yields I24

• I13, I35 and I16, I56 yields I15

• I13, I35 and I16, I56 yields I45

I23
I34

I14

I35

I16

I56


1 2

3

45

6

I34

I13, I45

I24

I56


I15

I56




Instant Centers of a Multi-Loop Mechanism
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I12

2

3

4

5

6

Determination of other instant centers:
• Write numbers up to ℓ

• Connect the numbers with a line for known instant centers

• I12, I23 and I14, I34 yields I13

• I23, I34 and I12, I14 yields I24

• I13, I35 and I16, I56 yields I15

• I14, I45 and I16, I56 yields I45

• I12, I15 and I23, I35 yields I25

I23
I34

I14

I35

I16

I56


1 2

3

45

6

I56


Continue the construction yourself!



Instant Centers of a Multi-Loop Mechanism
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I12

2

3

4

5

6

Determination of other instant centers:
• Write numbers up to ℓ

• Connect the numbers with a line for known instant centers

• I12, I23 and I14, I34 yields I13

• I23, I34 and I12, I14 yields I24

• I13, I35 and I16, I56 yields I15

• I14, I45 and I16, I56 yields I45

• I12, I15 and I23, I35 yields I25

• I12, I16 and I25, I56 yields I26 I23
I34

I14

I35

I16

I56


1 2

3

45

6

Continue the construction yourself!

I56




Instant Centers of a Multi-Loop Mechanism
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I12

2

3

4

5

6

Determination of other instant centers:
• Write numbers up to ℓ
• Connect the numbers with a line for known instant centers

• I12, I23 and I14, I34 yields I13

• I23, I34 and I12, I14 yields I24

• I13, I35 and I16, I56 yields I15

• I14, I45 and I16, I56 yields I45

• I12, I15 and I23, I35 yields I25

• I12, I16 and I25, I56 yields I26

• I13, I16 and I35, I56 yields I36 I23
I34

I14

I35

I16

I56


1 2

3

45

6

Continue the construction yourself!

I56




Instant Centers of a Multi-Loop Mechanism
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I12

2

3

4

5

6

Determination of other instant centers:
• Write numbers up to ℓ
• Connect the numbers with a line for known instant centers

• I12, I23 and I14, I34 yields I13

• I23, I34 and I12, I14 yields I24

• I13, I35 and I16, I56 yields I15

• I14, I45 and I16, I56 yields I45

• I12, I15 and I23, I35 yields I25

• I12, I16 and I25, I56 yields I26

• I12, I16 and I25, I56 yields I36

• I34, I36 and I45, I56 yields I46 I23
I34

I14

I35

I16

I56


1 2

3

45

6

Continue the construction yourself!

I56




Two Positions: Two circle points can be selected freely on
the moving plane. The center points can be anywhere on
the perpendicular bisectors of the circle points.

Three Positions: Two circle points can be selected freely on
the moving plane. The center points are the centers of the
circle points (unique for selected circle points!).

Four Positions: Two circle points should be select on
Burmester’s (K, circle point) curve on the moving plane. The
center points are the corresponding points on Burmester’s
(M, center point) curve.

Five Positions: Use four positions at a time twice, say 1, 2,
3, 4 and 1, 2, 3, 5. Draw Burmester’s K and M curves for
both. The curves may intersect at most 3 or less points.
Intersections of two K and two M curves are the circle and
center point candidates respectively.

Very Brief & Over Simplified Summary of 

Burmester’s Theory of ME 431 (1/7)
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Two Positions: Two circle points can be selected freely on

the moving plane (A1 and B1 in position 1, corresponding

homologous points in Position 2 are A2 and B2). The center

points can be anywhere on the perpendicular bisectors of

the circle points.

Very Brief & Over Simplified Summary of 

Burmester’s Theory of ME 431 (2/7)

ME 519 Kinematic Analysis of Mechanisms



Two Positions: Two circle points can be selected freely on

the moving plane (A1 and B1 in position 1, corresponding

homologous points in Position 2 are A2 and B2). The center

points (A0 and B0 respectively) can be anywhere on the

perpendicular bisectors of the circle points a12 and b12

respectively.

Very Brief & Over Simplified Summary of 

Burmester’s Theory of ME 431 (3/7)
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Three Positions: Two circle points (A1 and B1) can be

selected freely on the moving plane. The center points are

the centers of the circles defined by three points (this time

unique!).

Very Brief & Over Simplified Summary of 

Burmester’s Theory of ME 431 (4/7)

ME 519 Kinematic Analysis of Mechanisms



Four Positions: Two circle points should be select on

Burmester’s (K, circle point) curve (because you cannot

pass a circle through arbitrarily selected four points, these

four points must define a circle!) on the moving plane. The

center points are the corresponding points on Burmester’s

(M, center point) curve.

Very Brief & Over Simplified Summary of 

Burmester’s Theory of ME 431 (5/7)

ME 519 Kinematic Analysis of Mechanisms



Five Positions: Use four positions at a time twice, say 1, 2,

3, 4 and 1, 2, 3, 5. Draw Burmester’s K and M curves for

both. The K1234 and K1235 curves and M1234 and M1235 curves

may intersect at most 3 (or less points). Intersections of two

K and two M curves are the circle and corresponding center

point candidates respectively.

Please note that in four position synthesis you could trace the

points on K curve (therefore had infinitely many solution

candidates) however in five position synthesis you have just a finite

number of solutions (at most 6 different four-bar mechanisms for a

given motion, consequences in the next slide).

Very Brief & Over Simplified Summary of 

Burmester’s Theory of ME 431 (6/7)
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Some Problems of Position Synthesis

1. Although the mechanism exits in all design positions, all

the positions may not be in the same branch.

2. The positions may not be followed in order when the

mechanism is driven.

3. The transmission angle may not be favorable during the

whole range of motion.

4. The link lengths may not be suitable for specific

applications, joints may not be on desired areas.

5. During intermediate positions practical obstacles may

not be avoided.

6. etc…

Very Brief & Over Simplified Summary of 

Burmester’s Theory of ME 431 (7/7)

ME 519 Kinematic Analysis of Mechanisms



ME 301 Theory of Machines I

Transmission Angle:
Alt[1] defined the transmission angle as:

𝑡𝑎𝑛𝜇 =
𝐹3

𝑑

𝐹3
𝑝 or 𝑠𝑖𝑛𝜇 =

𝐹3
𝑑

𝐹3
[1] Alt, Hermann (1889 - 1954). Der Übertragungswinkel und seine Bedeutung für das Konstruieren periodischer

Getriebe (The transmission angle and its importance for designing periodic mechanisms). Werkstattstechnik 26 (1932)

61–64.

3

A

A0
B0

a2
a4

2

4

a3 B

12 14

13

T12
T14

B

2F

2F+M

2F+M
F3∠13+

F3∠13+

F3∠13+

F3∠13

F3∠13

F3∠13

F3
d

F3
p





Kinematic Analysis
1. Graphical Solution of Loop Closure Equations

2. Stepwise Solution of Loop Closure Equations

3. Analytic – Closed Form Solution

4. Numerical Solution

Law of cosines:

𝑠2 = 𝑎1
2 + 𝑎2

2 − 2𝑎1𝑎1𝑐𝑜𝑠𝜃12

𝑠2 = 𝑎3
2 + 𝑎4

2 − 2𝑎3𝑎4𝑐𝑜𝑠𝜇

𝑐𝑜𝑠𝜇 =
𝑎3

2 + 𝑎4
2 − 𝑎1

2 − 𝑎2
2 + 2𝑎1𝑎2𝑐𝑜𝑠𝜃12

2𝑎3𝑎4

The extremums of the transmission angle is

𝑑𝜇

𝑑𝜃12
= 𝑠𝑖𝑛𝜃12 = 0 → ቊ

𝜃12 = 0
𝜃12 = 𝜋

ME 301 Theory of Machines I

2

3

4

A

B

A0 B0

a3

12

a2
a4

a1





ME 301 Theory of Machines I

Transmission Angle:



ME 301 Theory of Machines I

Mechanical Advantage:
Definition: The mechanical advantage of a mechanism is

the instantaneous ratio of output torque (force) to input

torque (force).

For a four bar mechanism where input is link 2 and output

is link 4

𝑀𝐴 =
𝑇14
𝑇12

3

A

A0
B0

a2
a4

2

4

a3 B

12 14

13

T12
T14

B

2F

2F+M

2F+M
F3∠13+

F3∠13+

F3∠13+

F3∠13

F3∠13

F3∠13

F3
d

F3
p


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Mechanical Advantage:

𝑀𝐴 =
𝑇14
𝑇12

Neglecting friction, kinetic and gravitational potential energy

changes of the links (like quasi-static force analysis)

ℙ 𝑖𝑛 = ℙ 𝑜𝑢𝑡

−𝑇12𝜔12 = 𝑇14𝜔14

𝑀𝐴 =
𝑇14
𝑇12

= −
𝜔12

𝜔14

3

A

A0
B0

a2
a4

2

4

a3 B

12 14

13

T12
T14

B

2F

2F+M

2F+M
F3∠13+

F3∠13+

F3∠13+

F3∠13

F3∠13

F3∠13

F3
d

F3
p





ME 301 Theory of Machines I

Mechanical Advantage:

𝑀𝐴 =
𝑇14
𝑇12

= −
𝜔12

𝜔14
= −

ሶ𝜃12
ሶ𝜃14
=
𝑎4𝑠𝑖𝑛 𝜃14 − 𝜃13
𝑎2𝑠𝑖𝑛 𝜃12 − 𝜃13

𝑠𝑖𝑛 𝜃12 − 𝜃13 = 0,𝑀𝐴 → ∞ Dead centers!

𝑠𝑖𝑛 𝜃14 − 𝜃13 = 0,𝑀𝐴 = 0, 𝜇 = 0 or 𝜇 = 180°



Geogebra is a free tool for mathematics, graphics, geometry

etc.

Mechanism analysis and synthesis started with graphical

methods, using drafting tools like ruler, compass, T-square

etc. (i.e. geometry!)

With the evolution of digital computers the mathematics

behind geometry was formulated as analytic methods.

With the evolution of parametric CAD software packages

(e.g. SolidWorks, NX, Catia, etc.) the intuitive graphical

methods became popular again.

Geogebra Classic which can be downloaded or used as a

web application is a simple and intuitive tool to replace

expensive CAD programs for mechanism analysis and

synthesis.

Graphical Methods and Geogebra

ME 519 Kinematic Analysis of Mechanisms

https://www.geogebra.org/
https://www.geogebra.org/download
https://www.geogebra.org/classic


Position analysis of a crank-rocker four-bar utilizing graphical methods

on Geogebra:

The loop closure equation for virtually disconnecting and re-connecting

revolute joint B (i.e. B3 and B4 coincident) is:

𝑎2𝑒
𝜃12 + 𝑎3𝑒

𝜃13 = 𝑎1 + 𝑎4𝑒
𝜃14

For a given 𝜃12 A is fixed, B3 traces a circle of radius 𝑎3 centered at A

and B4 traces a circle of radius 𝑎4 centered at B0. The two intersection

points of these two circles yield two locations of point B for the current

position for two closures of the mechanism.

Graphical Methods and Geogebra

ME 519 Kinematic Analysis of Mechanisms

2

3

4

A

B3

A0 B0

B4

a2

a3

a4

12

13

14

a1

https://www.geogebra.org/


Position analysis of a crank-rocker four-bar utilizing graphical methods

on Geogebra:

Complete the two closures and run the mechanism by controlling given

𝜃12 by the slider.

Graphical Methods and Geogebra

ME 519 Kinematic Analysis of Mechanisms

https://www.geogebra.org/


Analysis of plane motion requires certain

parameters. A typical selection may be a,

b and  (recall degree of freedom of a rigid

body in plane motion is 3 therefore one

needs three independent parameters to

define the motion completely). Depending

how the motion is defined, further, either

two of these parameters may be defined

as a function of the third parameter or all

may be defined as a function of another

independent parameter, most commonly

time.

Selection of parameters to define the

motion is totally arbitrary but by using

canonical representation of plane motion

one may define the plane motion in a

unique way.

1. Canonical Representation of Plane Motion

ME 519 Kinematic Analysis of Mechanisms

X

Y

x
y

O (a, b); (0, 0)



A (X, Y); (x, y)



c

z

Z



Theorem 1: In every plane motion there exists a point which has

zero velocity at the instant considered. This point is called the

instant center of zero velocity/rotation pole1.

Theorem 2: Every point on the moving plane rotates about

instant center of zero velocity with a speed that is equal to the

product of distance of the point to the instant center and the

angular velocity of the plane. Recall from dynamics, 𝜔 =
𝑣𝐴

𝑟𝐴/𝐼𝐶𝑍𝑉
=

𝑣𝐵

𝑟𝐵/𝐼𝐶𝑍𝑉
=

𝑣𝐶

𝑟𝐶/𝐼𝐶𝑍𝑉
= ⋯ =

𝑣∙

𝑟∙/𝐼𝐶𝑍𝑉
and Ԧ𝑣𝐴 = 𝜔 × Ԧ𝑟𝐴/𝐼𝐶𝑍𝑉

Theorem 3: The motion of the moving plane is pure rolling of

moving centrode (locus of instant center on moving plane) on the

fixed centrode (locus of instant center on fixed plane).
1 This can be extended to Mozzi–Chasles' theorem that the most general rigid body

displacement can be produced by a translation along a line (called its screw axis or

Mozzi axis) followed (or preceded) by a rotation about an axis parallel to that line in 3-

D. Also recall Chasles’ theorem for finitely separated two positions (ME 431) which

boils down to the instant center of zero velocity at the limit when two positions are

infinitesimally close!

1. Canonical Representation of Plane Motion

ME 519 Kinematic Analysis of Mechanisms

http://www.me.metu.edu.tr/courses/me431/download/ME431.Handout_1_2016.pdf


Theorem 1: In every plane motion there exists a point

which has zero velocity at the instant considered. This

point is called the instant center of zero velocity/rotation

pole.

Proof:

A is a fixed point in the moving

plane x-y

𝑍, 𝑧, 𝑐 ∈ ℂ
𝑋, 𝑌, 𝑥, 𝑦, 𝜃, 𝜙 ∈ ℝ
𝑍 = 𝑋 + 𝑖𝑌
𝑧 = 𝑥 + 𝑖𝑦
𝑐 = 𝑎 + 𝑖𝑏
𝑋 = 𝑎 + 𝑥𝑐𝑜𝑠𝜙 − 𝑦𝑠𝑖𝑛𝜙
𝑌 = 𝑏 + 𝑥𝑠𝑖𝑛𝜙 + 𝑦𝑐𝑜𝑠𝜙

or

𝑍 = 𝑐 + 𝑧𝑒𝑖𝜙
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Theorem 1: In every plane motion there exists a point

which has zero velocity at the instant considered. This

point is called the instant center of zero velocity/rotation

pole.

Proof (cont’ed):

𝑋 = 𝑎 + 𝑥𝑐𝑜𝑠𝜙 − 𝑦𝑠𝑖𝑛𝜙
𝑌 = 𝑏 + 𝑥𝑠𝑖𝑛𝜙 + 𝑦𝑐𝑜𝑠𝜙
𝑍 = 𝑐 + 𝑧𝑒𝑖𝜙

Taking time derivative:
ሶ𝑋 = ሶ𝑎 − ሶ𝜙𝑥𝑠𝑖𝑛𝜙 − ሶ𝜙𝑦𝑐𝑜𝑠𝜙
ሶ𝑌 = ሶ𝑏 + ሶ𝜙𝑥𝑐𝑜𝑠𝜙 − ሶ𝜙𝑦𝑠𝑖𝑛𝜙
ሶ𝑍 = ሶ𝑐 + 𝑖 ሶ𝜙𝑧𝑒𝑖𝜙

For ሶ𝜙 ≠ 0

ሶ =
𝑑

𝑑𝑡
=
𝑑

𝑑𝜙

𝑑𝜙

𝑑𝑡
= ሶ𝜙

𝑑

𝑑𝜙
𝑑

𝑑𝜙
= ′
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Theorem 1: In every plane motion there exists a point

which has zero velocity at the instant considered. This

point is called the instant center of zero velocity/rotation

pole.

Proof (cont’ed):
𝑑𝑍

𝑑𝜙

𝑑𝜙

𝑑𝑡
=
𝑑𝑐

𝑑𝜙

𝑑𝜙

𝑑𝑡
+ 𝑖

𝑑𝜙

𝑑𝑡
𝑧𝑒𝑖𝜙

𝑑𝑍

𝑑𝜙
=
𝑑𝑐

𝑑𝜙
+ 𝑖𝑧𝑒𝑖𝜙

𝑍′ = 𝑐′ + 𝑖𝑧𝑒𝑖𝜙

𝑐′ = 𝑎′ + 𝑖𝑏′

In Cartesian coordinates

ൠ
𝑋′ = 𝑎′ − 𝑥𝑠𝑖𝑛𝜙 − 𝑦𝑐𝑜𝑠𝜙

𝑌′ = 𝑏′ + 𝑥𝑐𝑜𝑠𝜙 − 𝑦𝑠𝑖𝑛𝜙
𝐸𝑞. 1
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Theorem 1: In every plane motion there exists a point
which has zero velocity at the instant considered. This
point is called the instant center of zero velocity/rotation
pole (P).

Proof (cont’ed):

Instant center has zero velocity

𝑍′ = 0, 𝑋′ = 0 and 𝑌′ = 0

Location of instant center

• on moving plane 𝑝 𝑥𝑃 , 𝑦𝑃
• on fixed plane P 𝑋𝑃 , 𝑌𝑃
From Eq. 1

𝑥𝑃𝑠𝑖𝑛𝜙 + 𝑦𝑃𝑐𝑜𝑠𝜙=𝑎
′

𝑥𝑃𝑐𝑜𝑠𝜙 − 𝑦𝑃𝑠𝑖𝑛𝜙 = −𝑏′

Solution yields

ቑ

𝑥𝑃 = 𝑎′𝑠𝑖𝑛𝜙 − 𝑏′𝑐𝑜𝑠𝜙

𝑦𝑃 = 𝑎′𝑐𝑜𝑠𝜙 − 𝑏′𝑠𝑖𝑛𝜙

𝑧𝑃 = 𝑖𝑐′𝑒𝑖𝜙
𝐸𝑞. 2
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Theorem 1: In every plane motion there exists a point

which has zero velocity at the instant considered. This

point is called the instant center of zero velocity/rotation

pole.

Proof (cont’ed):

In fixed plane

𝑋𝑃 = 𝑎 − 𝑏′

𝑌𝑃 = 𝑏 + 𝑎′

𝑍𝑃 = 𝑐 + 𝑧𝑃𝑒
𝑖𝜙, 𝑧𝑃 = 𝑖𝑐′𝑒−𝑖𝜙

𝑍𝑃 = 𝑐 + 𝑖𝑐′

ቑ

𝑋𝑃 = 𝑎 − 𝑏′

𝑌𝑃 = 𝑏 + 𝑎′

𝑍𝑃 = 𝑐 + 𝑖𝑐′
𝐸𝑞. 3

This shows instant center of zero velocity/pole exists!
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Theorem 1: In every plane motion there exists a point
which has zero velocity at the instant considered. This
point is called the instant center of zero velocity/rotation
pole1.

Theorem 2: Every point on the moving plane rotates about
instant center of zero velocity with a speed that is equal to
the product of distance of the point to the instant center
and the angular velocity of the plane. Recall from dynamics,

𝜔 =
𝑣𝐴

𝑟𝐴/𝐼𝐶𝑍𝑉
=

𝑣𝐵

𝑟𝐵/𝐼𝐶𝑍𝑉
=

𝑣𝐶

𝑟𝐶/𝐼𝐶𝑍𝑉
= ⋯ =

𝑣∙

𝑟∙/𝐼𝐶𝑍𝑉
and Ԧ𝑣𝐴 = 𝜔 × Ԧ𝑟𝐴/𝐼𝐶𝑍𝑉

Theorem 3: The motion of the moving plane is pure rolling
of moving centrode (locus of instant center on moving
plane) on the fixed centrode (locus of instant center on fixed
plane).
1 This can be extended to Mozzi–Chasles' theorem that the most general rigid
body displacement can be produced by a translation along a line (called its screw
axis or Mozzi axis) followed (or preceded) by a rotation about an axis parallel to
that line in 3-D.

Canonical Representation of Plane Motion
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Theorem 2: Every point on the moving plane rotates about

instant center of zero velocity with a speed that is equal to

the product of distance of the point to the instant center

and the angular velocity of the plane.

Proof:

𝑍 = 𝑐 + 𝑧𝑒𝑖𝜙

𝑍 − 𝑍𝑃 = 𝑧 − 𝑧𝑃 𝑒𝑖𝜙

Taking time derivative:
ሶ𝑍 = 𝑧 − 𝑧𝑃 𝑒𝑖𝜙𝑖 ሶ𝜙

Ԧ𝑣𝑃 = 𝜔 × Ԧ𝑟𝑃/𝐼𝐶𝑍𝑉

Considering the trajectory of P

• on moving plane (Eq. 2) the moving centrode

• on fixed plane (Eq. 3) the fixed centrode

are obtained (leads to Theorem 3).
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Theorem 1: In every plane motion there exists a point
which has zero velocity at the instant considered. This
point is called the instant center of zero velocity/rotation
pole1.

Theorem 2: Every point on the moving plane rotates about
instant center of zero velocity with a speed that is equal to
the product of distance of the point to the instant center
and the angular velocity of the plane. Recall from dynamics,

𝜔 =
𝑣𝐴

𝑟𝐴/𝐼𝐶𝑍𝑉
=

𝑣𝐵

𝑟𝐵/𝐼𝐶𝑍𝑉
=

𝑣𝐶

𝑟𝐶/𝐼𝐶𝑍𝑉
= ⋯ =

𝑣∙

𝑟∙/𝐼𝐶𝑍𝑉
and Ԧ𝑣𝐴 = 𝜔 × Ԧ𝑟𝐴/𝐼𝐶𝑍𝑉

Theorem 3: The motion of the moving plane is pure rolling
of moving centrode (locus of instant center on moving
plane) on the fixed centrode (locus of instant center on fixed
plane).
1 This can be extended to Mozzi–Chasles' theorem that the most general rigid
body displacement can be produced by a translation along a line (called its screw
axis or Mozzi axis) followed (or preceded) by a rotation about an axis parallel to
that line in 3-D.

Canonical Representation of Plane Motion
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Theorem 3: The motion of the moving plane is pure rolling

of moving centrode (locus of instant center on moving

plane, Eq. 2) on the fixed centrode (locus of instant center

on fixed plane, Eq. 3).

Proof: Rolling without slipping requires
𝑑𝑆𝑃
𝑑𝜙

=
𝑑𝑠𝑃
𝑑𝜙

𝑑𝑠𝑃
𝑑𝜙

2

=
𝑑𝑥𝑃
𝑑𝜙

2

+
𝑑𝑦𝑃
𝑑𝜙

2

Recall [Eq. 2]

𝑥𝑃 = 𝑎′𝑠𝑖𝑛𝜙 − 𝑏′𝑐𝑜𝑠𝜙, 𝑦𝑃 = 𝑎′𝑐𝑜𝑠𝜙 − 𝑏′𝑠𝑖𝑛𝜙
𝑑𝑥𝑃
𝑑𝜙

= 𝑥𝑃
′ = 𝑎′′𝑠𝑖𝑛𝜙 + 𝑎′𝑐𝑜𝑠𝜙 − 𝑏′′𝑐𝑜𝑠𝜙 + 𝑏′𝑠𝑖𝑛𝜙

𝑑𝑦𝑃
𝑑𝜙

= 𝑦𝑃
′ = 𝑎′′𝑐𝑜𝑠𝜙 − 𝑎′𝑠𝑖𝑛𝜙 + 𝑏′′𝑠𝑖𝑛𝜙 + 𝑏′𝑐𝑜𝑠𝜙

𝑑𝑠𝑃
𝑑𝜙

2

= 𝑎′′ + 𝑏′ 2 + 𝑎′ − 𝑏′′ 2
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Theorem 3: The motion of the moving plane is pure rolling

of moving centrode (locus of instant center on moving

plane) on the fixed centrode (locus of instant center on fixed

plane).

Proof (cont’ed):

𝑑𝑆𝑃
𝑑𝜙

2

=
𝑑𝑋𝑃
𝑑𝜙

2

+
𝑑𝑌𝑃
𝑑𝜙

2

Recall [Eq. 3]

𝑋𝑃 = 𝑎 − 𝑏′

𝑌𝑃 = 𝑏 − 𝑎′

𝑑𝑋𝑃
𝑑𝜙

= 𝑋𝑃
′ = 𝑎′ − 𝑏′′

𝑑𝑌𝑃
𝑑𝜙

= 𝑌𝑃
′ = 𝑏′ − 𝑎′′

𝑑𝑆𝑃
𝑑𝜙

2

= 𝑎′′ + 𝑏′ 2 + 𝑎′ − 𝑏′′ 2 =
𝑑𝑠𝑃
𝑑𝜙

2
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Theorem 3: The motion of the moving plane is pure rolling

of moving centrode (locus of instant center on moving

plane) on the fixed centrode (locus of instant center on fixed

plane).

Proof (cont’ed): Further,
Τ𝑑𝑦𝑃 𝑑𝜙

Τ𝑑𝑥𝑃 𝑑𝜙
=
𝑏′ + 𝑎′′

𝑎′ − 𝑏′′

Τ𝑑𝑌𝑃 𝑑𝜙

Τ𝑑𝑋𝑃 𝑑𝜙
=
𝑏′ + 𝑎′′

𝑎′ − 𝑏′′

Therefore moving and fixed centrodes share the same

tangent at the contact point which is the pole/instant

center of zero velocity!

Q. E. D.
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Motion of Instant Center of Four-Bar I13
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https://www.youtube.com/watch?v=5fEIhVH1doU



Motion of Instant Center of Four-Bar I24
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Case 1: Revolute Joint/Fixed Axis Rotation:

𝑐 = 𝑟 = 𝑐𝑜𝑛𝑠𝑡.
𝜃 = 𝜙 + 𝑐𝑜𝑛𝑠𝑡.
𝑍𝑃 = 𝑧𝑃 = 0

Centrodes reduce to the axis of rotation.

Case 2: Prismatic Joint/Rectilinear Translation:

𝜙 = 𝑐𝑜𝑛𝑠𝑡. , ሶ𝜙 = 0

Pole at infinity in a direction perpendicular to translation axis.

Case 3: Cardanic Motion:

𝑐 = 𝑟0 = 𝑐𝑜𝑛𝑠𝑡.
𝜃 = −𝜙

Recall [Eq. 2]

𝑧𝑃 = 𝑖𝑐′𝑒𝑖𝜙

𝑐 = 𝑟𝑒𝑖𝜃 = 𝑎 + 𝑖𝑏 = 𝑟0𝑒
−𝑖𝜙

𝑐′ = −𝑖𝑟0𝑒
−𝑖𝜙

Centrodes of Some Common Motions
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Case 3: Cardanic Motion (cont’ed):

𝑧𝑃 = 𝑖𝑐′𝑒𝑖𝜙

𝑐 = 𝑟𝑒𝑖𝜃 = 𝑎 + 𝑖𝑏 = 𝑟0𝑒
−𝑖𝜙

𝑐′ = −𝑖𝑟0𝑒
−𝑖𝜙

𝑧𝑃 = 𝑖 −𝑖𝑟0𝑒
−𝑖𝜙 𝑒𝑖𝜙 = 𝑟0𝑒

−2𝑖𝜙

Recall [Eq. 3]

𝑍𝑃 = 𝑐 + 𝑖𝑐′ = 𝑟0𝑒
−𝑖𝜙 + 𝑟0𝑒

−𝑖𝜙 = 2𝑟0𝑒
−𝑖𝜙

This is like the motion of a planet gear of radius r0 inside a

fixed ring gear of radius 2r0 or a cylinder of radius r0 rolling

without slipping inside a fixed hollow cylinder of radius 2r0.

The pitch circles of the gears or the cylinders are known as

Cardan circles.

Centrodes of Some Common Motions

ME 519 Kinematic Analysis of Mechanisms

Two circles of radii r0 and 2r0



Cardan Circles
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Crank angle, , coupler angle, = - 

In-Line Slider-Crank (Equal Crank and Coupler Lengths)
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Consider the coupler (floating link) of the double slider.

Please note that the two slider axes need not to be

perpendicular to each other however they are not allowed to

be parallel.

𝐴𝐵 = 𝑝 + 𝑞 = 𝑐
𝑋 = 𝑝 𝑐𝑜𝑠𝜃 + ℎ 𝑠𝑖𝑛𝜃
𝑌 = 𝑞 𝑠𝑖𝑛𝜃 + ℎ 𝑐𝑜𝑠𝜃

𝑐𝑜𝑠𝜃 =
𝑞𝑋 − ℎ𝑌

𝑝𝑞 − ℎ2

𝑠𝑖𝑛𝜃 =
𝑝𝑌 − ℎ𝑋

𝑝𝑞 − ℎ2

𝑠𝑖𝑛2𝜃 + 𝑐𝑜𝑠2𝜃 = 1

𝑝𝑌 − ℎ𝑋 2 + 𝑞𝑋 − ℎ𝑌 2 = 𝑝𝑞 − ℎ2 2

Double Slider
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𝑝𝑌 − ℎ𝑋 2 + 𝑞𝑋 − ℎ𝑌 2 = 𝑝𝑞 − ℎ2 2

ℎ2 + 𝑞2 𝑋2 + ℎ2 + 𝑝2 𝑌2 − 2ℎ 𝑝 + 𝑞 𝑋𝑌 = 𝑝𝑞 − ℎ2 2

ℎ2 + 𝑞2 = 𝑏2

ℎ2 + 𝑝2 = 𝑎2

𝑝 + 𝑞 = 𝑐

𝑏2𝑋2 + 𝑎2𝑌2 − 2ℎ𝑐𝑋𝑌 = 𝑝𝑞 − ℎ2 2

This is the equation of an ellipse!

For C on |AB|

h = 0, p = a, q = b

𝑏2𝑋2 + 𝑎2𝑌2 = 𝑎2 + 𝑏2

or

𝑋2

𝑎2
+
𝑌2

𝑏2
= 1

For a = b it would be a circle.

Double Slider
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Cardan Ellipses
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Cardan Ellipses
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If C is selected on a circle whose diameter is |AB| then

𝑎2 + 𝑏2 = 𝑝 + 𝑞 2 = 𝑝2 + 𝑞2 + 2𝑝𝑞
𝑎2 = ℎ2 + 𝑝2

𝑏2 = ℎ2 + 𝑞2

Substitution yields

ℎ2 = 𝑝𝑞
𝑏2𝑋2 + 𝑎2𝑌2 − 2ℎ 𝑝 + 𝑞 𝑋𝑌 = 0
𝑎𝑌 − 𝑏𝑋 2 = 0

𝑌 =
𝑏

𝑎
𝑋

This is an exact straight line

motion mechanism whose

coupler point curve is a line

with a slope b/a passing through origin!

Double Slider
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Cardan Motion
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Cardan Motion
The rod is connected to the external gear on its pitch circle with a revolute joint. 

Since the radius of the pitch circle of the internal gear is double of that of the 

external gear, the revolute joint on the pitch circle of the external gear will draw 

a straight line along the diameter of the pitch circle of the internal gear.

ME 519 Kinematic Analysis of Mechanisms

http://140.116.71.92/cmd/model/page/model/ntu/_L09.htm



Sample Uses of Cardanic Motion
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Case 4: Cycloidal Motion (r = const,  = k, k  ):

−
𝑇2
𝑇1

=
𝜔11 −𝜔13

𝜔12 −𝜔13
𝑇2
𝑇1

=
𝜃

𝜙 − 𝜃
𝑇2
𝑇1

𝜙 − 𝜃 = 𝜃

𝑇2
𝑇1
𝜙 −

𝑇2
𝑇1
𝜃 = 𝜃

𝑇2
𝑇1
𝜙 = 1 +

𝑇2
𝑇1

𝜃

𝜃 =
ൗ

𝑇2
𝑇1

1 + ൗ
𝑇2

𝑇1

𝜙 = 𝑘𝜙, 𝑘 =
ൗ

𝑇2
𝑇1

1 + ൗ
𝑇2

𝑇1

Centrodes of Some Common Motions
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



T1

T2



Case 4: Cycloidal Motion (r = const,  = k, k  ):

Centrodes of Some Common Motions

ME 519 Kinematic Analysis of Mechanisms

Epicycloid Hypocycloid



Case 5: Coupler Motion of a Four Bar Mechanism:

Centrodes, in general, are not simple curves

For a crank-rocker the centrodes tend to infinity

For drag-link (double crank) centrodes are closed curves

Centrodes of Some Common Motions
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Centrodes of Crank-Rocker

ME 519 Kinematic Analysis of Mechanisms

https://www.youtube.com/watch?v=5fEIhVH1doU



Centrodes of Double-Crank

ME 519 Kinematic Analysis of Mechanisms
https://www.youtube.com/watch?v=GEFZE33Vabc



Case 5: Coupler Motion of a Four Bar Mechanism (cont’ed):

The loop closure equation in complex form:

𝑎2𝑒
𝑖𝜃12 + 𝑎3𝑒

𝑖𝜃13 = 𝑎1 + 𝑎4𝑒
𝑖𝜃14

Eliminate 14 using loop closure equation and its complex

conjugate:

𝑎2𝑒
𝑖𝜃12 + 𝑎3 𝑒

𝑖𝜃13 − 𝑎1 = 𝑎4𝑒
𝑖𝜃14

𝑎2𝑒
−𝑖𝜃12 + 𝑎3𝑒

−𝑖𝜃13 − 𝑎1 = 𝑎4𝑒
−𝑖𝜃14

𝑎2𝑒
𝑖𝜃12 + 𝑎3𝑒

𝑖𝜃13 − 𝑎1 𝑎2𝑒
−𝑖𝜃12 + 𝑎3𝑒

−𝑖𝜃13 − 𝑎1 = 𝑎4
2

Simplification yields

𝑎1
2 + 𝑎2

2 + 𝑎3
2 − 𝑎4

2 + 𝑎2𝑎3 𝑒𝑖 𝜃12−𝜃13 + 𝑒−𝑖 𝜃12−𝜃13

− 𝑎1𝑎2 𝑒𝑖𝜃12 + 𝑒−𝑖𝜃12 − 𝑎1𝑎3 𝑒𝑖𝜃13 + 𝑒−𝑖𝜃13 = 0

Centrodes of Some Common Motions
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Case 5: Coupler Motion of a Four Bar Mechanism (cont’ed):

𝑎1
2 + 𝑎2

2 + 𝑎3
2 − 𝑎4

2 + 𝑎2𝑎3 𝑒𝑖 𝜃12−𝜃13 + 𝑒−𝑖 𝜃12−𝜃13

− 𝑎1𝑎2 𝑒𝑖𝜃12 + 𝑒−𝑖𝜃12 − 𝑎1𝑎3 𝑒𝑖𝜃13 + 𝑒−𝑖𝜃13 = 0

Recall Euler’s identity

𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃 = 𝑒𝑖𝜃 , 𝑐𝑜𝑠𝜃 − 𝑖𝑠𝑖𝑛𝜃 = 𝑒−𝑖𝜃

Sum of the two yields

2𝑐𝑜𝑠𝜃 = 𝑒𝑖𝜃+ 𝑒−𝑖𝜃

𝑎1
2 + 𝑎2

2 + 𝑎3
2 − 𝑎4

2 + 2𝑎2𝑎3𝑐𝑜𝑠 𝜃12 − 𝜃13
−2𝑎1𝑎2𝑐𝑜𝑠𝜃12 − 2𝑎1𝑎3𝑐𝑜𝑠𝜃13 = 0

Utilizing previous notation,  = 12 and  = 13

𝑎1
2 + 𝑎2

2 + 𝑎3
2 − 𝑎4

2 + 2𝑎2𝑎3𝑐𝑜𝑠 𝜃 − 𝜙
−2𝑎1𝑎2𝑐𝑜𝑠𝜃 − 2𝑎1𝑎3𝑐𝑜𝑠𝜙 = 0
𝑓 𝜃, 𝜙 = 𝑎1

2 + 𝑎2
2 + 𝑎3

2 − 𝑎4
2 + 2𝑎2𝑎3𝑐𝑜𝑠 𝜃 − 𝜙 − 2𝑎1𝑎2𝑐𝑜𝑠𝜃 − 2𝑎1𝑎3𝑐𝑜𝑠𝜙 = 0

Centrodes of Some Common Motions
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Case 5: Coupler Motion of a Four Bar Mechanism (cont’ed):
𝑓 𝜃, 𝜙 = 𝑎1

2 + 𝑎2
2 + 𝑎3

2 − 𝑎4
2 + 2𝑎2𝑎3𝑐𝑜𝑠 𝜃 − 𝜙 − 2𝑎1𝑎2𝑐𝑜𝑠𝜃 − 2𝑎1𝑎3𝑐𝑜𝑠𝜙 = 0

𝑐 = 𝑎2𝑒
𝑖𝜃

𝑧𝑝 = 𝑖𝑐′𝑒−𝑖𝜙

𝑐′ = 𝑐
Τ𝜕𝑓 𝜕𝜙

Τ𝜕𝑓 𝜕𝜃

𝑧𝑝 = 𝑖𝑐
Τ𝜕𝑓 𝜕𝜙

Τ𝜕𝑓 𝜕𝜃
𝑒−𝑖𝜙

𝑍𝑝 = 𝑐 + 𝑖𝑐′ = 𝑐 1 +
Τ𝜕𝑓 𝜕𝜙

Τ𝜕𝑓 𝜕𝜃

One could use another set of variables as:

𝑟, 𝜃, 𝜙 , 𝑟 = 𝑐 , 𝜃 = 𝑎𝑟𝑔 𝑐 , 𝑐 = 𝑒𝑖𝜃

Centrodes of Some Common Motions
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Case 5: Coupler Motion of a Four Bar Mechanism (cont’ed):

Example: Anti-parallel equal crank four-bar (a > b)

𝐴0𝐴 = 𝐵0𝐵 = 𝑎
𝐴0𝐵0 = 𝐴𝐵 = 𝑏
𝐼13 = 𝑃

For any position of the mechanism

𝐴0𝑃 + 𝑃𝐴 = 𝑎
𝐵0𝑃 + 𝑃𝐵 = 𝑎
∆𝑃𝐵𝐴 = ∆𝑃𝐵0𝐴0
𝐴0𝑃 + 𝐵0𝑃 = 𝑐𝑜𝑛𝑠𝑡.

Fixed centrode is an ellipse.

Invert the motion, fixed centrode of

inverted motion is the moving centrode.

Centrodes of Some Common Motions
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Case 5: Coupler Motion of a Four Bar Mechanism (cont’ed):

Example: Anti-parallel equal crank four-bar (a > b)

Fixed centrode is an ellipse.

Centrodes of Some Common Motions
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Case 5: Coupler Motion of a Four Bar Mechanism (cont’ed):

Example: Anti-parallel equal crank four-bar (a < b)

Centrodes of Some Common Motions
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Case 5: Coupler Motion of a Four Bar Mechanism (cont’ed):

Example: Anti-parallel equal crank four-bar (a < b)

Centrodes of Some Common Motions
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Theorem 4: For the inverted motion (i.e. fixed plane is

moving and moving plane is fixed) the moving and fixed

centrodes change their roles. The angular velocity of the

moving plane is negative angular velocity of the original

motion.

Recall [See]

𝑍𝑃 = 𝑐 + 𝑧𝑃𝑒
𝑖𝜙

𝑧𝑃𝑒
𝑖𝜙 = −𝑐 + 𝑍𝑃

𝑧𝑃 = −𝑐𝑒−𝑖𝜙 + 𝑍𝑃𝑒
−𝑖𝜙

Let

𝑢 = −𝑐𝑒−𝑖𝜙 and 𝜓 = −𝜙
𝑧𝑃 = 𝑢 + 𝑍𝑃𝑒

𝑖Ψ

Moving centrode of inverted motion: 𝑍𝑃 = 𝑖𝑢𝑒−𝑖Ψ

Fixed centrode of inverted motion: 𝑧𝑃 = 𝑢 + 𝑖𝑢′

Canonical Representation of Plane Motion
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Fixed Centrode:

1. Select two appropriate points on the moving plane

2. Move the mechanism in small increments using

graphical position analysis

3. Mark location of I1i on the fixed link

4. Go to 2 till you trace the necessary portion of the

centrode

5. Connect the points by a smooth curve

Moving Centrode:

Same as fixed centrode but replace step 3 as:

3. Mark location of I1i on the ith link

This can be achieved on any parametric CAD software easily and accurately!

Determination of Centrodes

Graphical Method
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Assignment: Think of a practical method of plotting moving

centrode on Geogebra.

Determination of Centrodes

Graphical Method
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Recall canonical reference frame:

𝑋 = 𝑎 + 𝑥𝑐𝑜𝑠𝜙 − 𝑦𝑠𝑖𝑛𝜙
𝑌 = 𝑏 + 𝑥𝑠𝑖𝑛𝜙 + 𝑦𝑐𝑜𝑠𝜙
𝑍 = 𝑐 + 𝑧𝑒𝑖𝜙 𝑤ℎ𝑒𝑟𝑒 𝑐 = 𝑎 + 𝑖𝑏, 𝑧 = 𝑥 + 𝑖𝑦

Location of pole on moving plane:

𝑥𝑃 = 𝑎′𝑠𝑖𝑛𝜙 − 𝑏′𝑐𝑜𝑠𝜙
𝑦𝑃 = 𝑎′𝑐𝑜𝑠𝜙 + 𝑏′𝑠𝑖𝑛𝜙

𝑧𝑃 = 𝑖𝑐′𝑒
𝑖𝜙
𝑤ℎ𝑒𝑟𝑒 ′ =

𝑑

𝑑𝜙

Location of pole on fixed plane:

𝑋𝑃 = 𝑎 − 𝑏′
𝑌𝑃 = 𝑏 + 𝑎′
𝑍𝑃 = 𝑐 + 𝑖𝑐′

Determination of Centrodes

Analytic Method
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Select your reference frames such that:

1. Two reference frames are coincident at the instant

considered, i.e. 𝑐 = 0,𝜙 = 0 but ሶ𝜙 ≠ 0

2. Take P as the origin of both frames

3. Take X and x axis coincident with the path tangent
𝑑𝑋𝑝
𝑑𝜙

= 𝑎′ − 𝑏′′ 𝑎𝑛𝑑
𝑑𝑌𝑝
𝑑𝜙

= 𝑏′ + 𝑎′′

𝑑𝑌𝑝
𝑑𝑋𝑝

=
𝑑𝑌𝑝/𝑑𝜙

𝑑𝑋𝑝/𝑑𝜙
=
𝑏′ + 𝑎′′

𝑎′ − 𝑏′′
= 0

𝑎′′ = 0
𝑏′′ ≠ 0

Determination of Centrodes

Analytic Method-Canonical Reference Frame

ME 519 Kinematic Analysis of Mechanisms

P, O

y, Y

x, X



P



𝑎′′ = 0
𝑏′′ ≠ 0

𝑏′ + 𝑎′′

𝑎′ − 𝑏′′
= 0 ⇒ 𝑏′ + 𝑎′′ = 0 ∨ 𝑎′ + 𝑏′′ ≠ 0

𝑥𝑃 = 𝑎′𝑠𝑖𝑛0 − 𝑏′𝑐𝑜𝑠0 = 0 ⇒ 𝑏′ = 0 ∴ 𝑎′′ = 0
𝑦𝑃 = 𝑎′𝑐𝑜𝑠0 + 𝑏′𝑠𝑖𝑛0 = 0 ⇒ 𝑎′ = 0 ∴ 𝑏′′ ≠ 0

Determination of Centrodes

Analytic Method-Canonical Reference Frame

ME 519 Kinematic Analysis of Mechanisms

P, O

y, Y

x, X



P



• Two infinitesimally separated positions: One position and

first rate of change of this position (i.e. velocity) changes

at this position.

• Three infinitesimally separated positions: One position,

first rate of change of this position and how the tangent

(i.e. curvature) changes at this position.

• Four infinitesimally separated positions: One position,

first rate of change of this position, how the tangent (i.e.

curvature) and rate of curvature changes at this position.

Recall Burmester’s theory for finitely separated positions!

Determination of Centrodes

Analytic Method-Overview
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Contact of Two Curves
One Point Contact
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Contact of Two Curves
Two Point Contact (Same Tangent/Slope)
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Contact of Two Curves
Three Point Contact (Same Radius of Curvature)
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Contact of Two Curves
Four Point Contact (Same Rate of Change of Radius of Curvature)
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The Euler-Savary equation is derived by:

• L’hospital in 1696 in basic form

• Euler in 1765

• Savary in 1841

Euler-Savary equation relates 𝐴 𝑟, 𝜓 to its center of curvature 𝐶 𝑟𝐶 , 𝜓
by Τ𝑑𝜃 𝑑𝑠 which is only a function of the motion of the moving plane.

Ԧ𝑣𝐴 = Ԧ𝑣𝑃 + Ԧ𝑣𝐴/𝑃

Ԧ𝑣𝑃 = 0, Ԧ𝑣𝐴 = Ԧ𝑣𝐴/𝑃
Ԧ𝑣𝐴 = Ԧ𝑣𝐴/𝑃 = 𝜔 × Ԧ𝑟

𝑡𝑎𝑛𝑑𝜃 =
𝑣𝐴𝑑𝑡

𝑟
=
𝜔𝑟𝑑𝑡

𝑟
= 𝜔𝑑𝑡

𝑠𝑖𝑛𝑑𝜃 = 𝑡𝑎𝑛𝑑𝜃 = 𝑑𝜃

𝜔 =
𝑑𝜃

𝑑𝑡
Two infinitesimally separated positions

of a moving plane is entirely determined

by the pole.

Two Infinitesimally Separated Positions
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P, O

y, Y

x, X



P

A(r,)



vAdt

d

r



Motion of Coupler (Link 3) of Four-Bar

ME 519 Kinematic Analysis of Mechanisms

r

v = r

A velocity field on moving plane!



Geometric Approach

• C, center of curvature of 

point A for the position 

shown is on pole ray since 

Ԧ𝑣𝐴 ⊥ pole ray.

• d is the infinitesimal 

rotation of the moving 

centrode  on the fixed 

centrode P.

• ds is the arc length on 

moving and fixed centrodes.

Derivation of Euler-Savary Equation
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P, O

y, Y

x, X



P

A(r,)



r

C(rC,)

r

P’’

P’



-ds

d



Geometric Approach

Euler-Savary equation is valid 

under:

• During infinitesimal motion 

about the position shown 
Τ𝑑𝜃 𝑑𝑠 is finite and non-zero 

(i.e. 𝑑𝜃 ≠ 0 ∧ 𝑑𝑠 ≠ 0).

• Points A and P are not 

coincident.

• |AP| is finite.

Derivation of Euler-Savary Equation
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P, O

y, Y, N

x, X, T



P

A(r,)



r

C(rC,)

r

P’’

P’



-ds

d



Geometric Approach

∆𝐶𝐴𝐴′ ∼ ∆𝐶𝑃𝑃′′ ∴
𝐴𝐴′

𝑃𝑃′′
=

𝐶𝐴

𝐶𝑃
𝐴𝐴′ = 𝑟𝑑𝜃
𝑃𝑃′′ = −𝑑𝑠𝑠𝑖𝑛Ψ
𝐶𝐴 = 𝑟𝐶 − 𝑟
𝐶𝑃 = 𝑟𝐶
Substitution yields

𝑟𝑑𝜃

−𝑑𝑠𝑠𝑖𝑛Ψ
=
𝑟𝐶 − 𝑟

𝑟𝐶

1

𝑟
−
1

𝑟𝑐
𝑠𝑖𝑛𝜓 = −

𝑑𝜃

𝑑𝑠

Euler-Savary equation in basic 

form.

Derivation of Euler-Savary Equation
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A’

P, O

y, Y, N

x, X, T



P

A(r,)



r

C(rC,)

r

P’’

P’



-ds

d



Geometric Approach

1

𝑟
−
1

𝑟𝑐
𝑠𝑖𝑛𝜓 = −

𝑑𝜃

𝑑𝑠
𝑑𝜃

𝑑𝑠
=

Τ𝑑𝜃 𝑑𝑡

Τ𝑑𝑠 𝑑𝑡
=
𝜔

𝑣𝑃
𝑣𝑃 is the pole velocity. Please 

note that at the instant 

considered pole is stationary 

but its location is changing on 

moving and fixed centrodes. 

Therefore 𝑣𝑃 is the rate of 

change of location of the pole. 

1

𝑟
−
1

𝑟𝑐
𝑠𝑖𝑛𝜓 = −

𝜔

𝑣𝑃

Euler-Savary equation in 

kinematic form.

Derivation of Euler-Savary Equation
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A’

P, O

y, Y, N

x, X, T



P

A(r,)



r

C(rC,)

r

P’’

P’



-ds

d



Example

A cylinder of radius R rolls on a 

straight surface. Determine the 

center of curvature of points A, 

B and O.

Derivation of Euler-Savary Equation
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P

N

T

A

R



B

O



ME 208 Dynamics

Sample Problem 5/4 (Meriam 4th, 5th, 6th, 7th and 8th editions)

A wheel of radius r rolls on a flat surface without slipping. Determine

the angular motion of the wheel in terms of the linear motion of its

center O. Also determine the acceleration of a point on the rim of the

wheel as the point comes into contact with the surface on which the

wheel rolls.

Derivation of Euler-Savary Equation
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Example

A cylinder of radius R rolls on a 

straight surface. Determine the 

center of curvature of points A, 

B and O.

𝐴 2𝑅, 45° , 𝐵 2𝑅, 90° , 𝑂 𝑅, 90°

𝑣𝑃 = −𝜔𝑅
1

𝑟
−
1

𝑟𝑐
𝑠𝑖𝑛𝜓 = −

𝜔

𝑣𝑃

For A

1

2𝑅
−
1

𝑟𝑐
𝑠𝑖𝑛45° = −

𝜔

−𝜔𝑅
=
1

𝑅

𝑟𝑐 = − 2𝑅

𝐶𝐴 − 2𝑅, 45° or 𝐶𝐴 2𝑅, 225°

Derivation of Euler-Savary Equation
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P

N

T

A

R



B

O

CA



Example (cont’ed)

𝐵 2𝑅, 90° , 𝑂 𝑅, 90°

For B

1

2𝑅
−
1

𝑟𝑐
𝑠𝑖𝑛90° =

1

𝑅

𝑟𝑐 = −2𝑅

𝐶𝐵 − 2𝑅, 45° 𝑜𝑟𝐶𝐵 2𝑅, 225°

For O

1

𝑅
−
1

𝑟𝑐
𝑠𝑖𝑛90° =

1

𝑅
1

𝑟𝑐
= 0 ∴ 𝑟𝑐 → ∞

It is obvious that O travels on a 

straight path so its center of 

curvature is at infinity, 

perpendicular to its path.

Derivation of Euler-Savary Equation
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P

N

T

A

R



B

O

CB

CO




Analytic Approach

Recall radius of curvature from calculus:

1

𝜅
= 𝜌 =

1 + Τ𝑑𝑦 𝑑𝑥 2 3/2

Τ𝑑2𝑦 𝑑𝑥2

In fixed plane

𝑑𝑌

𝑑𝑋
=

Τ𝑑𝑌 𝑑𝜙

Τ𝑑𝑋 𝑑𝜙
=
𝑌′

𝑋′
,
𝑑2𝑌

𝑑𝑋2
=
𝑌′′𝑋′ − 𝑋′′𝑌′

𝑋′2

𝑋′ =
𝑑𝑋

𝑑𝜙
= 𝑎′ − 𝑥𝑠𝑖𝑛𝜙 − 𝑦𝑐𝑜𝑠𝜙

𝑌′ =
𝑑𝑌

𝑑𝜙
= 𝑏′ + 𝑥𝑐𝑜𝑠𝜙 − 𝑦𝑠𝑖𝑛𝜙

𝑋′′ =
𝑑2𝑋

𝑑𝜙2
= 𝑎′′ − 𝑥𝑐𝑜𝑠𝜙 + 𝑦𝑠𝑖𝑛𝜙

𝑌′′ =
𝑑2𝑌

𝑑𝜙2
= 𝑏′′ − 𝑥𝑠𝑖𝑛𝜙 − 𝑦𝑐𝑜𝑠𝜙

In canonical reference frame 𝑐 = 0, 𝑎′ = 𝑎′′ = 𝑏′ = 0,𝜙 = 0 but 𝑏′′ ≠ 0

Derivation of Euler-Savary Equation
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Analytic Approach

𝑋 = 𝑥, 𝑌 = 𝑦
𝑋′ = −𝑦, 𝑌′ = 𝑥
𝑋′′ = −𝑥, 𝑌′′ = 𝑏′′ − 𝑦

1

𝜅
= 𝜌 =

Τ𝑋′2 + 𝑌′2 3/2 𝑋′2

Τ𝑌′′𝑋′ − 𝑋′′𝑌′ 𝑋′2
=

𝑋′2 + 𝑌′2 3/2

𝑌′′𝑋′ − 𝑋′′𝑌′
=

𝑥2 + 𝑦2 3/2

𝑏′′ − 𝑦 −𝑦 − −𝑥2

1

𝜅
= 𝜌 =

𝑥2 + 𝑦2 3/2

−𝑏𝑦′′ + 𝑦2 + 𝑥2
=

𝑥2 + 𝑦2 3/2

−𝑏𝑦′′ + 𝑥2 + 𝑦2

𝜌 = 𝑟𝐶 − 𝑟
𝑥2 + 𝑦2 = 𝑟2

𝑦 = 𝑟𝑠𝑖𝑛𝜓

Substitution and simplification yields:

1

𝑟
−
1

𝑟𝑐
𝑠𝑖𝑛𝜓 =

1

𝑏′′

This is Euler-Savary equation in its basic form.

Recall

𝑏′′ =
𝑑2𝑏

𝑑𝜙2
= −

𝑑𝑠

𝑑𝜙

Derivation of Euler-Savary Equation
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

A (X, Y); (x, y)



c

z
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Determine the points on the moving plane for which radius of curvature 

is infinite (i.e. momentarily moving on a straight path).
1

𝑟𝐶
= 0

Substitution into Euler-Savary equation yields:
1

𝑟
𝑠𝑖𝑛𝜓 = −

𝑑𝑠

𝑑𝜙

Let

−
𝑑𝑠

𝑑𝜙
= 𝛿

𝑟𝑊 = 𝛿𝑠𝑖𝑛𝜓

where 𝑟𝑊 is the locus of inflection points.

On every pole ray there is only one inflection point, W.

Infection Point, Infection and Return Circles
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𝑟𝑊 = 𝛿𝑠𝑖𝑛𝜓

is in polar form. 

Transforming it into Cartesian coordinates:

𝑠𝑖𝑛𝜓 =
𝑦𝑊
𝑟𝑊

𝑟𝑊 = 𝑥𝑊
2 + 𝑦𝑊

2

𝑋𝑊 = 𝑥𝑊 = 𝑟𝑊𝑐𝑜𝑠𝜓 = 𝛿𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜓
𝑌𝑊 = 𝑦𝑊 = 𝑟𝑊𝑠𝑖𝑛𝜓 = 𝛿𝑠𝑖𝑛2𝜓

𝑟𝑊 = 𝛿𝑠𝑖𝑛𝜓 = 𝛿
𝑦𝑊
𝑟𝑊

Rearranging

𝑟𝑊
2 − 𝛿𝑦𝑊 = 0

𝑥𝑊
2 + 𝑦𝑊

2 − 𝛿𝑦𝑊 = 0

or

𝑥𝑊
2 + 𝑦𝑊 −

𝛿

2

2

=
𝛿

2

2

𝐶 0, Τ𝛿 2 , 𝑅 = Τ𝛿 2

This is known as inflection circle.

Infection Point, Infection and Return Circles
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Recall

𝜌 = 𝑟𝐶 − 𝑟, 𝑟𝐶 = 𝜌 + r

substituting into Euler Savary equation 

1

𝑟
−

1

𝜌 + r
𝑠𝑖𝑛𝜓 = 𝛿

simplification yields:

𝜌 =
𝑟2

𝛿𝑠𝑖𝑛𝜓 − 𝑟

Quadratic form of Euler-Savary equation.

Infection Point, Infection and Return Circles
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𝜌 =
𝑟2

𝛿𝑠𝑖𝑛𝜓 − 𝑟

Normalizing this equation by 𝛿𝑠𝑖𝑛𝜓

𝑟∗ =
𝑟

𝛿𝑠𝑖𝑛𝜓
, 𝜌∗ =

𝜌

𝛿𝑠𝑖𝑛𝜓

𝜌∗ =
𝑟∗2

1 − 𝑟∗

Normalized quadratic form of Euler-Savary equation.

Infection Point, Infection and Return Circles
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𝜌 =
𝑟2

𝛿𝑠𝑖𝑛𝜓 − 𝑟

𝜌∗ =
𝑟∗2

1 − 𝑟∗

Consequences:

1. There is only one inflection point on each pole ray.

2. When 𝑟∗ > 1 (i.e. r > 𝛿𝑠𝑖𝑛𝜓) center of curvature is “below” (i.e. 𝜌∗ < 0) 

and radius of curvature increases as r increases.

3. When 𝑟∗ < 1 (i.e. r < 𝛿𝑠𝑖𝑛𝜓) center of curvature is “above” (i.e. 𝜌∗ > 0) 

and radius of curvature decreases as r decreases to 0. At 𝑟∗ = 0 (r =
0) 𝜌∗ = 0 (𝜌 = 0) there is a cusp. For 𝑟∗ < 0 𝜌 starts increasing.

4. When 
1

𝑟
= 0 Euler-Savary equation takes the form 𝑟𝐶 = −𝛿𝑠𝑖𝑛𝜓 which 

is the locus of return circle. It is the locus of center of curvature of 

points at infinity.

Infection Point, Infection and Return Circles
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𝜌 =
𝑟2

𝛿𝑠𝑖𝑛𝜓 − 𝑟

𝜌∗ =
𝑟∗2

1 − 𝑟∗

Please note that curvatures are always concave when viewed from the 

inflection point, W.

Substituting

𝑟𝑊 = 𝛿𝑠𝑖𝑛𝜓

into Euler-Savary equation in basic form
1

𝑟
−
1

𝑟𝐶
=

1

𝑟𝑊
geometric form of Euler-Savary equation is obtained.

Infection Point, Infection and Return Circles
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Please note that one term in Euler-Savary equation, which is only a

function of motion, is not evaluated up to now which is the differential

coefficient or the inflection circle diameter.

𝛿 = −
𝑑𝑠

𝑑𝜃
= −

𝑣𝑃
𝜔
=

1

𝑏′′
Utilizing arc lengths:

−𝑑𝑠 = 𝑟𝑃𝑑𝜃𝑃 = 𝑟Π𝑑𝜃Π
yielding
𝑟𝑃
𝑟Π

=
𝑑𝜃Π
𝑑𝜃𝑃

Recall

−
𝑑𝜃

𝑑𝑠
=
1

𝛿
, 𝑑𝑠 = −𝛿𝑑𝜃

1

𝛿
=

1

𝑟Π
−
1

𝑟𝑃
The centers of curvature of the fixed and moving centrodes are

conjugate points and this equation is analogous to Euler-Savary

equation for  = 90o. If centers of curvature of centrodes are known the

differential coefficient can be evaluated.

Infection Point, Infection and Return Circles
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P, O

N

T



P


-ds

d

OP (rp,90o)

O (r,90o)

dP

d

d



For matching two motions in three infinitesimally separated

positions (i.e. both motions to have the same path, path

tangent and path curvature at the design point):

• the poles of two motions should be superimposed,

• the pole tangents should be aligned in the same

direction,

• scale one motion so that the inflection circle diameters

are the same.

Inverted Motion

For the inverted motion d reverses its direction, fixed and

moving centrodes, and, inflection and return circles change

their roles.

Infection Point, Infection and Return Circles
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Example:

A cylinder of radius 6 cm rolls inside a fixed cylindrical hole

of radius 9 cm without slipping at  = 1 rad/s CCW. Two

points on the moving plane, A1 3 2, 45° and

A2 −3 2, 135° are given.

a. Determine the centers of curvature for A1 and A2,

b. Determine the inflection circle,

c. Determine the pole velocity.

Infection Point, Infection and Return Circles
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Example:
1

𝛿
=

1

𝑟Π
−
1

𝑟𝑃
=
1

6
−
1

9
=

1

18
, 𝛿 = 18 𝑐𝑚

𝑣𝑃 = −𝜔𝛿 = −1 ∗ 18 = −18 𝑐𝑚/𝑠

Euler-Savary equation

1

𝑟
−
1

𝑟𝑐
𝑠𝑖𝑛𝜓 =

1

𝛿

for point A1

1

3 2
−
1

𝑟𝑐
𝑠𝑖𝑛45° =

1

18
, 𝑟𝑐 =

9 2

2
𝑐𝑚

for point A2

1

−3 2
−
1

𝑟𝑐
𝑠𝑖𝑛135° =

1

18
, 𝑟𝑐 =

−9 2

4
𝑐𝑚

Infection Point, Infection and Return Circles

ME 519 Kinematic Analysis of Mechanisms



Example: Long Period Pendulum with Small Size

For a simple pendulum with a massless rod and point mass

𝑇 =
1

2
𝑚𝑣2 =

1

2
𝑚 ℓ ሶ𝜃

2
=
1

2
𝑚ℓ2 ሶ𝜃2

𝑉 = 𝑚𝑔ℓ 1 − 𝑐𝑜𝑠𝜃 ≅ 𝑚𝑔ℓ
𝜃2

2
ሶ𝑇 + ሶ𝑉 = ℙ𝑖𝑛 − ℙ𝑑𝑖𝑠
𝑚ℓ2 ሶ𝜃 ሷ𝜃 + 𝑚𝑔ℓ𝜃 ሶ𝜃 = 0

ℓ ሷ𝜃 + 𝑔𝜃 = 0

𝜔𝑛 =
𝑔

ℓ
, T = 2π

ℓ

𝑔

Longer the pendulum length, ℓ , larger the period of

undamped free oscillations of the pendulum. However

space restrictions may limit the length of the pendulum!

Infection Point, Infection and Return Circles
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Example: Long Period Pendulum (cont’ed)

Quadratic form of Euler-Savary equation

𝜌 = ℓ =
𝑟 2

𝛿 − 𝑟

T = 2π
𝜌

𝑔
= 2π𝑟

1

𝑔 𝛿 − 𝑟

To increase period, T, 𝛿 − 𝑟

should be reduced.

This can be achieved by moving

G close (but below) the inflection point.

Curvature is concave up in the infinitesimal neighborhood of

the design point. Stability should be checked for the entire

range even for small (but finite) motion of the pendulum.

Infection Point, Infection and Return Circles
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P

N

T



P

-ds

d

CG

G

d

d

G’

r

𝜌 = ℓ



Example: Long Period Pendulum (cont’ed)

Some examples of long period small pendula:

Infection Point, Infection and Return Circles
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Review of n-t Coordinates (ME 208 Dynamics)

𝑑𝑠 = 𝜌𝑑𝛽,
𝑑𝑠

𝑑𝑡
= 𝜌

𝑑𝛽

𝑑𝑡
+
𝑑𝜌

𝑑𝑡
𝑑𝛽, 𝑣 = 𝜌 ሶ𝛽

Ԧ𝑣 = 𝑣 Ƹ𝑒𝑡, Ƹ𝑒𝑡 ≡
Ԧ𝑣

𝑣

Ԧ𝑎 =
𝑑 Ԧ𝑣

𝑑𝑡
= ሶ𝑣 Ƹ𝑒𝑡 + 𝑣 ሶƸ𝑒𝑡

ሶ𝑣 =
𝑑 Ԧ𝑣

𝑑𝑡

𝑑 Ƹ𝑒𝑡 = 𝑑𝛽 Ƹ𝑒𝑛, ሶƸ𝑒𝑡 =
𝑑 Ƹ𝑒𝑡
𝑑𝑡

=
𝑑𝛽

𝑑𝑡
Ƹ𝑒𝑛 = ሶ𝛽 Ƹ𝑒𝑛

Ԧ𝑎 = ሶ𝑣 Ƹ𝑒𝑡 + 𝑣 ሶ𝛽 Ƹ𝑒𝑛, 𝑣 = 𝜌 ሶ𝛽 → ሶ𝛽 =
𝑣

𝜌

Ԧ𝑎 = ሶ𝑣 Ƹ𝑒𝑡 +
𝑣2

𝜌
Ƹ𝑒𝑛

Acceleration Analysis Using Centrodes
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Consider A on the moving

plane with angular velocity 

and angular acceleration .

Ԧ𝑎𝐴 = Ԧ𝑎𝐴
𝑡
+ Ԧ𝑎𝐴

𝑛
= ሶ𝑣𝐴 Ƹ𝑒𝑡 +

𝑣𝐴
2

𝜌
Ƹ𝑒𝑛

𝑣𝐴 = 𝜔 𝑃𝐴 = 𝜔𝑟

𝜌 =
𝑟2

𝛿𝑠𝑖𝑛𝜓 − 𝑟

𝑎𝐴
𝑛 =

𝜔2𝑟2

Τ𝑟2 𝛿𝑠𝑖𝑛𝜓 − 𝑟

𝑎𝐴
𝑛 = 𝜔2 𝛿𝑠𝑖𝑛𝜓 − 𝑟

Acceleration Analysis Using Centrodes
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P

N

T



P



-ds

A (r, )

W0

, 

W

C (rC, )

t
n





Consider A on the moving plane

with angular velocity  and angular

acceleration .

Ԧ𝑎𝐴 = Ԧ𝑎𝐴
𝑡
+ Ԧ𝑎𝐴

𝑛
= ሶ𝑣𝐴 Ƹ𝑒𝑡 +

𝑣𝐴
2

𝜌
Ƹ𝑒𝑛

𝑎𝐴
𝑛 = 𝜔2 𝛿𝑠𝑖𝑛𝜓 − 𝑟

𝑎𝐴
𝑡 =

𝑑

𝑑𝑡
𝑟𝜔 = 𝑟𝛼 + 𝜔

𝑑𝑟

𝑑𝑡
𝑑𝑟 = −𝑑𝑠𝑐𝑜𝑠𝜓
𝑑𝑟

𝑑𝑡
= −

𝑑𝑠

𝑑𝜃

𝑑𝜃

𝑑𝑡
𝑐𝑜𝑠𝜓 = 𝛿𝜔𝑐𝑜𝑠𝜓

𝑎𝐴
𝑡 = 𝑟𝛼 + 𝛿𝜔2𝑐𝑜𝑠𝜓

Ԧ𝑎𝐴 = 𝑟𝛼 + 𝛿𝜔2𝑐𝑜𝑠𝜓 Ƹ𝑒𝑡 + 𝜔2 𝛿𝑠𝑖𝑛𝜓 − 𝑟 Ƹ𝑒𝑛

Acceleration Analysis Using Centrodes
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P

N

T



P



-ds

A (r, )

W0

, 

W

C (rC, )

t
n





Ԧ𝑎𝐴 = 𝑟𝛼 + 𝛿𝜔2𝑐𝑜𝑠𝜓 Ƹ𝑒𝑡 + 𝜔2 𝛿𝑠𝑖𝑛𝜓 − 𝑟 Ƹ𝑒𝑛
Rearrange

Ԧ𝑎𝐴 = 𝜔2 𝛿𝑠𝑖𝑛𝜓 Ƹ𝑒𝑛 + 𝛿𝜔2𝑐𝑜𝑠𝜓 Ƹ𝑒𝑡 − 𝑟𝜔2 Ƹ𝑒𝑛 + 𝑟𝛼 Ƹ𝑒𝑡
Ԧ𝑎𝐴 = 𝜔2 𝑃𝑊0 − 𝑟 Ƹ𝑒𝑛 + 𝑟𝛼 Ƹ𝑒𝑡

Recall

𝑟 Ƹ𝑒𝑛 + 𝐴𝑊0 = 𝑃𝑊0

Ԧ𝑎𝐴 = 𝐴𝑊0𝜔
2 + 𝑟𝛼 Ƹ𝑒𝑡

Acceleration Analysis Using Centrodes

ME 519 Kinematic Analysis of Mechanisms

P

N

T



P



-ds

A (r, )

W0

, 

W

C (rC, )

t
n





Ԧ𝑎𝐴 = 𝐴𝑊0𝜔
2 + 𝑟𝛼 Ƹ𝑒𝑡

Theorem: The acceleration of

any point on the moving plane

is the vector sum of a

component 𝐴𝑊0 𝜔
2 directed

towards the inflection pole, W0,

and a component r tangent to

its path.

Please note that these two

components are not

perpendicular to each other in

general.

Acceleration Analysis Using Centrodes
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P

N

T



P



-ds

A (r, )

W0

, 

W

C (rC, )

t
n





Ԧ𝑎𝐴 = 𝐴𝑊0𝜔
2 + 𝑟𝛼 Ƹ𝑒𝑡

Consequences:

• For 𝛼 = 0 the acceleration of

every point on the moving

plane is towards the

inflection pole, W0.

• Acceleration of the pole (r =

0, path is a cusp):

Ԧ𝑎𝑃 = 𝑃𝑊0𝜔
2

Acceleration Analysis Using Centrodes
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P

N

T



P



-ds

A (r, )

W0

, 

W

C (rC, )

t
n





P,

N

T



P



-ds

A (r, )

W0

, 

W

C (rC, )

t
n



Ԧ𝑎𝐴
= 𝑟𝛼 + 𝛿𝜔2𝑐𝑜𝑠𝜓 Ƹ𝑒𝑡 + 𝜔2 𝛿𝑠𝑖𝑛𝜓 − 𝑟 Ƹ𝑒𝑛
Ԧ𝑎𝐴 = 𝐴𝑊0𝜔

2 + 𝑟𝛼 Ƹ𝑒𝑡
Consequences (cont’ed):

• Points on moving plane with 𝑎𝑛 = 0,𝜔 ≠ 0
𝛿𝑠𝑖𝑛𝜓 − 𝑟 = 0
𝛿𝑠𝑖𝑛𝜓 = 𝑟

Inflection circle, point on a straight path,

no curvature no normal acceleration!

Circle de la Hire

• Points on moving plane with 𝑎𝑡 = 0 :

𝑟𝛼 + 𝛿𝜔2𝑐𝑜𝑠𝜓 = 0

𝑟 = −
𝛿𝜔2

𝛼
𝑐𝑜𝑠𝜓

Bresse Circle

Acceleration Analysis Using Centrodes
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P,

N

T



P



-ds

A (r, )

W0

, 

W

C (rC, )

t
n









 is the acceleration pole where both

normal and tangential components

are zero therefore the total

acceleration is zero.

𝜓∗ =
𝜋

2
+ 𝛾

𝑡𝑎𝑛𝛾 =
𝛼

𝜔2

𝑡𝑎𝑛𝜓∗ =
−𝜔2

𝛼

Acceleration Analysis Using Centrodes
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P,

N

T



P



-ds

A (r, )

W0

, 

W

C (rC, )

t
n









𝑎𝐴 = 𝑎𝐴
𝑡2 + 𝑎𝐴

𝑛2

𝑎𝐴 = 𝑟𝛼 + 𝜔2𝛿𝑐𝑜𝑠𝜓 2 + 𝜔4 𝛿𝑠𝑖𝑛𝜓 − 𝑟 2

𝛼 = 𝜔2𝑡𝑎𝑛𝛾

𝑎𝐴 =
𝜔2

𝑐𝑜𝑠𝛾
𝛿2𝑐𝑜𝑠2𝛾 + 𝑟2 − 2𝛿𝑟𝑐𝑜𝑠𝛾𝑠𝑖𝑛 𝜓 − 𝛾

𝑃Γ = 𝛿𝑐𝑜𝑠𝛾

𝑐𝑜𝑠 ∢Γ𝑃𝐴 = 𝑐𝑜𝑠 𝛾 +
𝜋

2
− 𝜓 = 𝑠𝑖𝑛 𝜓 − 𝛾

𝑎𝐴 =
𝜔2

𝑐𝑜𝑠𝛾
𝑟2 − 𝑃Γ 2 − 2𝑟 𝑃Γ 𝑐𝑜𝑠 ∢Γ𝑃𝐴

𝑎𝐴 =
𝜔2 𝐴Γ

𝑐𝑜𝑠𝛾

𝑐𝑜𝑠𝛾 =
1

1 + 𝑡𝑎𝑛2𝛾
=

1

1 + Τ𝛼2 𝜔4
=

𝜔4

𝜔4 + 𝛼2

𝑎𝐴 = 𝐴Γ 𝜔4 + 𝛼2

𝑎𝐴 = 𝐴Γ 𝜔4 + 𝛼2𝑒−𝑖𝛾

Acceleration Analysis Using Centrodes
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𝑎𝐴 = 𝐴Γ 𝜔4 + 𝛼2𝑒−𝑖𝛾

Acceleration Analysis Using Centrodes
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P,

N

T



P



-ds

A (r, )

W0

, 

W

C (rC, )

t
n









2/



aA



Theorem: The path normals (i.e. pole rays) of two points on

the moving plane make equal angles with the collineation

axis and the pole tangent.

Given the radii of curvature of two points on the moving

plane, inflection circle diameter can be determined.

Let A1 and A2 be two distinct points on a moving plane with

centers of curvature being C1 and C2 respectively.

Bobillier’s Theorem
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Let A1 and A2 be two distinct points on a moving plane with

centers of curvature being C1 and C2 respectively.

Bobillier’s Theorem
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1. Draw lines through A1 C1 and A2 C2, intersection is P.

Bobillier’s Theorem
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2. Draw lines through A1 A2 and C1 C2, intersection is Q12.

Bobillier’s Theorem
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3. Line P Q12 is the collineation axis.

Bobillier’s Theorem

ME 519 Kinematic Analysis of Mechanisms



4. Draw a line parallel to C1 C2 through P, S is the

intersection with A1 A2.

Bobillier’s Theorem
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5. Draw a parallel to collineation axis through S, S is the

intersection with A1 A2. The intersection with pole rays 1

and 2 are W1 and W2 respectively.

Bobillier’s Theorem
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7. W0, and P define the inflection circle therefore pole

tangent and normal are known.

Bobillier’s Theorem
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Notice ∢𝑃𝑊2𝑊1 = ∢𝑃𝑊0𝑊1 = ∢𝑇𝑃𝑊1 = ∢𝑊2𝑃𝑄12 = 𝛽

Bobillier’s Theorem
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Please note that the location of collineation axis does not

depend on selection of points A1 and A2 but on the location

of inflection points W1 and W2, therefore on the inflection

circle and instantaneous motion of the moving plane.

Bobillier’s Theorem
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1. Known pole, P, pole tangent, T, inflection pole W0, for a

point A on moving plane determine its center of curvature

CA.

PA is ray 1, PW0 is ray 2.

PT is ⊥ PN so collineation axis is ⊥ PA

Application Examples of Bobillier’s Theorem
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1. Known pole, P, pole tangent, T, inflection pole W0, for a

point A on moving plane determine its center of curvature

CA (cont’ed)

W0 has its center of curvature at  along N (ray 2), AW0 intersects

collineation axis at Q12.

A line ∥ PN (which is towards CW0
) through Q12 passes through CA.

Application Examples of Bobillier’s Theorem
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2. Known pole, P, pole tangent, T, and conjugate point pairs

on pole normal (OO’), for a point A on moving plane

determine its center of curvature CA. This corresponds to

known radii of curvature of centrodes (e.g. planetary gear

trains).

AP is on Ray 1, OO’ defines PN (Ray 2).

Application Examples of Bobillier’s Theorem
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2. Known pole, P, pole tangent, T, and conjugate point pairs

on pole normal (OO2’), for a point A on moving plane

determine its center of curvature CA. This corresponds to

known radii of curvature of centrodes (e.g. planetary gear

trains) (Cont’ed).

Collineation axis is ⊥ Ray 1, since PT is ⊥ Ray 2.

Application Examples of Bobillier’s Theorem
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2. Known pole, P, pole tangent, T, and conjugate point pairs

on pole normal (OO2’), for a point A on moving plane

determine its center of curvature CA. This corresponds to

known radii of curvature of centrodes (e.g. planetary gear

trains) (Cont’ed).

Draw AO’, intersection with collineation axis is Q12.

Application Examples of Bobillier’s Theorem
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2. Known pole, P, pole tangent, T, and conjugate point pairs

on pole normal (OO2’), for a point A on moving plane

determine its center of curvature CA. This corresponds to

known radii of curvature of centrodes (e.g. planetary gear

trains) (Cont’ed).

Since O is center of curvature of O’ intersection of Q12O with Ray 1 is

CA.

Application Examples of Bobillier’s Theorem
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3. Known two conjugate points (like AA0 and BB0 for a four-

bar) on two distinct pole rays. Determine center of

curvature for another point, E, on the moving plane.

AA0 and BB0 form two pole rays therefore P is at the intersection.

Application Examples of Bobillier’s Theorem
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3. Known two conjugate points (like AA0 and BB0 for a four-

bar) on two distinct pole rays. Determine center of

curvature for another point, E, on the moving plane.

QAB is at the intersection of AB and A0B0.

Application Examples of Bobillier’s Theorem
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3. Known two conjugate points (like AA0 and BB0 for a four-

bar) on two distinct pole rays. Determine center of

curvature for another point, E, on the moving plane.

Bobiller’s theorem states ∢𝑄𝐴𝐵𝑃𝐴 = ∢𝐵𝑃𝑇 = 𝛼

Application Examples of Bobillier’s Theorem
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3. Known two conjugate points (like AA0 and BB0 for a four-

bar) on two distinct pole rays. Determine center of

curvature for another point, E, on the moving plane.

Bobiller’s theorem states ∢𝑇𝑃𝐸 = ∢𝐴𝑃𝑄𝐴𝐸 = 𝛽 QAE is at the intersection

of PQAE and AE.

Application Examples of Bobillier’s Theorem
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3. Known two conjugate points (like AA0 and BB0 for a four-

bar) on two distinct pole rays. Determine center of

curvature for another point, E, on the moving plane.

Draw QAEAO. Intersection with ray PE yields CE.

Application Examples of Bobillier’s Theorem
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3. Known two conjugate points (like AA0 and BB0 for a four-

bar) on two distinct pole rays. Determine center of

curvature for another point, E, on the moving plane.

The same result would be obtained if you use B and B0 instead of A and A0.

Application Examples of Bobillier’s Theorem
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Example:

Determine the center of curvature of point E on the coupler

of the slider-crank mechanism.

Bobillier’s Theorem
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Example:

A0A and B0B are two pole rays therefore intersection yields

the pole.

Bobillier’s Theorem
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Example:

QAB is at the intersection of A0B0 and AB.

Bobillier’s Theorem

ME 519 Kinematic Analysis of Mechanisms



Example:

Bobiller’s theorem states ∢𝑄𝐴𝐵𝑃𝐴 = ∢𝐵𝑃𝑇 = 𝛼.

Bobillier’s Theorem
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Example:

Bobiller’s theorem states ∢𝑇𝑃𝐸 = ∢𝐴𝑃𝑄𝐴𝐸 = 𝛽 . QAE is the

intersection of PQAE and AE.

Bobillier’s Theorem
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Example:

Draw QAEA0 intersection of pole ray PE yields CE.

Bobillier’s Theorem
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Example:

Determine the center of curvature of point E on the coupler

of the inverted slider-crank mechanism.

Bobillier’s Theorem
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Example:

Determine the center of curvature of point E on the coupler

of the inverted slider-crank mechanism.

A0A and B0B are two pole rays therefore P is at the

intersection.

Bobillier’s Theorem
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Example:

Determine the center of curvature of point E on the coupler

of the inverted slider-crank mechanism.

QABA is at the intersection of AB and A0B0.

Bobillier’s Theorem
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Example:

Determine the center of curvature of point E on the coupler

of the inverted slider-crank mechanism.

Bobiller’s theorem states ∢𝑄𝐴𝐵𝑃𝐴 = ∢𝐵𝑃𝑇 = 𝛼.

Bobillier’s Theorem
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Example:

Determine the center of curvature of point E on the coupler

of the inverted slider-crank mechanism.

Bobiller’s theorem states ∢𝑇𝑃𝐸 = ∢𝐴𝑃𝑄𝐴𝐸 = 𝛽 . QAE is the

intersection of PQAE and AE.

Bobillier’s Theorem

ME 519 Kinematic Analysis of Mechanisms



Example:

Determine the center of curvature of point E on the coupler

of the inverted slider-crank mechanism.

Draw QAEA0 intersection with PE yields CE.

Bobillier’s Theorem
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Example:

Determine the center of curvature of point E on the coupler

of the inverted slider-crank mechanism.

Bobillier’s Theorem
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Example:

Long period pendulum (revisited):

𝐴0𝐴 = 2 𝑐𝑚
𝐴0𝐵0 = 5 𝑐𝑚
𝑀𝐴 = 8 𝑐𝑚

For  = 90° Euler-Savary equation becomes
1

𝛿𝑠𝑖𝑛𝜓
=

1

𝑟𝑊
=
1

𝑟𝐴
−

1

𝑟𝐴0
Please recognize P is B0 for symmetry position

𝑟𝐴 = 3 𝑐𝑚, 𝑟𝐴0 = 5 𝑐𝑚 ∴ 𝑟𝑊 = 15
2 𝑐𝑚

For point M
1

𝑟𝑊
=

1

𝑟𝑀
−

1

𝑟𝐶𝑀
=

2

15
=

1

11
−

1

𝑟𝐶𝑀
→ 𝑟𝐶𝑀 = −23.6 𝑐𝑚

𝜌𝑀 = 23.6 + 11 = 34.6 𝑐𝑚

Bobillier’s Theorem
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Dwell Mechanisms:

During dwell the output of the mechanism remains

stationary for a certain motion of the input crank. The

output may not be completely stationary but if very small

this may be considered as dwell for many applications.

𝐴0𝐵0 = 56.3 𝑐𝑚
𝐴0𝐴 = 18.8 𝑐𝑚
𝐴𝐵 = 69.0 𝑐𝑚
𝐴𝐶 = 34.5 𝑐𝑚
𝐵0𝐵 = 34.5 𝑐𝑚

Bobillier’s Theorem
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Dwell Mechanisms:

P is at the intersection of A0A and B0B.

Bobillier’s Theorem
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Dwell Mechanisms:

QAB is at the intersection of A0B0 and AB.

Bobillier’s Theorem
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Dwell Mechanisms:

Bobiller’s theorem states ∢𝑄𝐴𝐵𝑃𝐴 = ∢𝐵𝑃𝑇 = 𝛼.

Bobillier’s Theorem
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Dwell Mechanisms:

Bobiller’s theorem states ∢𝑇𝑃𝐶 = ∢𝐴𝑃𝑄𝐴𝐶 = 𝛽 . QAC is the

intersection of PQAC and AC.

Bobillier’s Theorem
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Dwell Mechanisms:

Intersection of QACA0 with ray PC yields CC.

Bobillier’s Theorem
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Dwell Mechanisms:

Dwell with oscillating arm.

Bobillier’s Theorem
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Dwell Mechanisms:

Dwell with translating arm.

Bobillier’s Theorem
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Straight Line Motion Mechanisms:

There are two major types of straight line motion

mechanisms:

• Exact straight line motion mechanisms where the

coupler curve or a portion of it is an exact straight line.

• Approximate straight line motion mechanisms where the

coupler curve or a portion of it is very close to a straight

line.

Bobillier’s Theorem
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Exact Straight Line: Cardan Motion
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Watt’s Straight Line Motion Mechanism

ME 519 Kinematic Analysis of Mechanisms

https://en.wikipedia.org/wiki/Watt%27s_linkage



Straight Line Motion Mechanisms:
There are two major types of straight line motion mechanisms:

• Exact straight line motion mechanisms where the coupler curve or a
portion of it is an exact straight line.

Cardanic motion where the moving centrode of radius r0 rolls inside a
cylinder of radius 2r0 a point on the moving centrode describes an exact
straight line.

• Approximate straight line motion mechanisms where the coupler
curve or a portion of it is very close to a straight line.

The moving centrode rolling on the fixed centrode may be approximated
up to a certain order the Cardanic motion so a point on the moving
centrode approximates a straight line up to the same order at the
design point.

First Order: Point and tangent the same (two infinitesimally separated
positions).

Second Order: Point, tangent and curvature the same (three
infinitesimally separated positions).

Third Order: Point, tangent, curvature and rate of change of curvature
the same (four infinitesimally separated positions).

Bobillier’s Theorem
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Straight Line Motion Mechanisms–Symmetric Four Bar:

Use Cardanic motion centrodes, P the fixed centrode and 

the moving centrode.

Bobillier’s Theorem
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Straight Line Motion Mechanisms–Symmetric Four Bar:

Select A arbitrarily. Like collineation axis is ⊥ AP since PT is

⊥ PN.

Bobillier’s Theorem
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Straight Line Motion Mechanisms–Symmetric Four Bar:

Draw AO’ (O’ is center of ) intersection with collineation

axis is QAO’.

Bobillier’s Theorem
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Straight Line Motion Mechanisms–Symmetric Four Bar:

Intersection of QAO’ W0 with Ray1 yields A0.

Bobillier’s Theorem
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Straight Line Motion Mechanisms–Symmetric Four Bar:

You may repeat the same procedure for B or you may select

symmetric points about pole normal.

Bobillier’s Theorem
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Straight Line Motion Mechanisms–Symmetric Four Bar:

You may repeat the same procedure for B or you may select

symmetric points about pole normal.

Bobillier’s Theorem
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Straight Line Motion Mechanisms–Symmetric Four Bar:

Bobillier’s Theorem
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Straight Line Motion Mechanisms–Symmetric Four Bar:

Actually any point on inflection circle (which is also the

moving centrode) describes a straight line. The reason for

selecting the inflection pole W0 will become clear soon.

Bobillier’s Theorem
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Straight Line Motion Mechanisms–Level Luffing Crane:

Bobillier’s Theorem
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https://www.europeana.eu/portal/en/record/2020801/dmglib_handler_image_16783023.html



Four Bar Linkage (Level Luffing) Crane
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https://commons.wikimedia.org/wiki/File:Crane_double-lever-jib-type_sideview_animated.gif



Four Bar Linkage (Level Luffing) Crane
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https://upload.wikimedia.org/wikipedia/commons/4/48/Crane_double-lever-jib-type_3D_animated.gif



Four Bar Linkage (Level Luffing) Crane
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http://www.jjhig.com/en/index.asp?16T33Mfo.html



Straight Line Motion Mechanisms–Level Luffing Crane:

Select A arbitrarily. Like collineation axis is ⊥ AP since PT is

⊥ PN.

Bobillier’s Theorem

ME 519 Kinematic Analysis of Mechanisms



Straight Line Motion Mechanisms–Level Luffing Crane:

Draw AO’ and BO’ (B is selected arbitrarily too) intersection

with collineation axis yield QAO’ and QBO’ respectively (1/2).

Bobillier’s Theorem
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Straight Line Motion Mechanisms–Level Luffing Crane:

Draw AO’ and BO’ (B is selected arbitrarily too) intersection

with collineation axis yield QAO’ and QBO’ respectively (2/2).

Bobillier’s Theorem
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Straight Line Motion Mechanisms–Level Luffing Crane:

Intersection of QAO’W0 (which is O as well) with Ray1 yields

A0.

Bobillier’s Theorem
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Straight Line Motion Mechanisms–Level Luffing Crane:

Intersection of QBO’ W0 (which is O as well) with Ray2 yields

B0.

Bobillier’s Theorem
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Straight Line Motion Mechanisms–Level Luffing Crane:

Bobillier’s Theorem
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Straight Line Motion Mechanisms–Level Luffing Crane:

Level Luffing Crane Video Here (Ready!)

Bobillier’s Theorem
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Stability Analysis of Lifting Rigs & Spreader Frames:

They are used to lift huge components using cranes.

Bobillier’s Theorem
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Rigs and Spreader Frames

ME 519 Kinematic Analysis of Mechanisms

1. Single Spreader Beam: 2-Point Lift

2. Single Spreader Beam: 4-Point Lift

3. 3 Spreader Beams – "1-over-2" 4-Point Lift

4. 3 Spreader Beams – "1-over-2" in-line: 4-Point Lift

5. 2 Spreader Beams – "1-over-1" 3-Point Lift

6. Multiple Spreader Beams: Multi-Point Lift

7. Spreader Frames

8. Lifting Frames
https://www.modulift.com/rig-design/custom-design-solutions/rig-design



Rigs and Spreader Frames

Caravan Lifting Rig
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https://www.lakeandair.com/Caravan-Lifting-Rig-p/1005247.htm



Rigs and Spreader Frames

Tein Otter Lifting Rig for Seaplanes
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https://www.lakeandair.com/Twin-Otter-Lifting-Rig-p/1005836.htm



Rigs and Spreader Frames

Adjustable Spreader
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https://www.amazon.com/Caldwell-Group-32C-10-4-Adjustable-Spreader/dp/B01KOURV3E



Rigs and Spreader Frames
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https://www.lakeandair.com/Caravan-Lifting-Rig-p/1005247.htm



Rigs and Spreader Frames
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http://amzoneinternational.com/Products/SpreaderBeam/



Rigs and Spreader Frames
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https://www.maritimeprofessional.com/news/designed-heavy-dockside-lifts-318712



Rigs and Spreader Frames
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http://chart-ur-bar.com/spreader-systems.php



Rigs and Spreader Frames
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https://belowthehookrigging.com/spreader-bars/



Rigs and Spreader Frames

ME 519 Kinematic Analysis of Mechanisms
https://es.123rf.com/photo_42336308_elevaci%C3%B3n-de-palets-con-elementos-de-encofrado-por-la-gr%C3%BAa-en-la-obra.html



Stability Analysis of Lifting Rigs & Spreader Frames:

There are four possible equivalent linkages of the rigs and frames

around the infinitesimal neighborhood of the equilibrium position. Only

one of those is in stable, other three are in unstable equilibrium. Here

C shows the hook of the crane, G is the center of gravity of the load

together with rigs or frames and CG is the center of curvature of the

center of gravity, G.

Bobillier’s Theorem
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Umbrella Tent:

Bobillier’s Theorem
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Umbrella Tent:

Bobillier’s Theorem
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Umbrella Tent:

Bobillier’s Theorem
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Umbrella Tent: Unstable!

Bobillier’s Theorem
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𝜙

𝑎2



Umbrella Tent:

Center of curvature of mass center, CG, can be determined

using Bobillier’s construction and it can be shown by using

Euler-Savary equation that CG is between C and G

therefore stable for

1

𝑃𝐶
>

1

𝑃𝐴
−

1

𝑃𝐷
𝑠𝑖𝑛𝜙 +

1

𝑃𝐺
1

𝑃𝐴
−

1

𝑃𝐷
= 𝑎2

Bobillier’s Theorem
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Bird Cage:

Bobillier’s Theorem
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Bird Cage: Unstable!

Bobillier’s Theorem
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𝜙
𝑎2



Bird Cage:

Center of curvature of mass center, CG, can be determined

using Bobillier’s construction and it can be shown by using

Euler-Savary equation that CG is between C and G

therefore stable for

1

𝑃𝐶
<

1

𝑃𝐴
−

1

𝑃𝐷
𝑠𝑖𝑛𝜙 +

1

𝑃𝐺
1

𝑃𝐴
−

1

𝑃𝐷
= 𝑎2

Bobillier’s Theorem
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For some applications (e.g. cams) rather than determining

the centrodes it might be easier to find two curves, one

fixed and other moving, rolling and sliding on each other.

Still the centrodes exist but the equivalent linkages may

also be derived from the generating curves and envelopes.

Generating Curves & Envelopes
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Generating Curves & Envelopes
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https://www.youtube.com/watch?v=d3DpgF1-xdI



Generating Curves & Envelopes
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https://www.youtube.com/watch?v=9DhcAiV5U34



Generating Curves & Envelopes
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https://www.youtube.com/watch?v=UtdSJZn62H8



g-g is the moving generating curve and e-e is the fixed

envelope.

Generating Curves & Envelopes
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g

e e

g

g

g

g

g



While g-g is rolling and sliding on e-e,  rolls on P without

slipping. G is the center of curvature of g-g and E is the

center of curvature of e-e, M is the contact point.

Generating Curves & Envelopes
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g

e e

g

P



T

N

P

G

E

M



Even if there is sliding at M still G momentarily traces a

circle centered at E. Therefore E and G are conjugate

points.

Generating Curves & Envelopes
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g

e e

g

P



T

N

P

G

E

M



Path of G is perpendicular to GM but it should also be

perpendicular to PG (pole ray). Therefore P, E, M and G

have to be collinear.

Generating Curves & Envelopes
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g

e e

g

P



T

N

P

G

E

M



Aranhold’s First Theorem: The return circle is the locus of

centers of curvatures of all envelopes whose generating

curves are straight lines.

Generating Curves & Envelopes

g

e

e

g

T

N

P

M

W0

R0

g'

g'

R

P


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Aranhold’s First Theorem, Proof:

For a straight generating curve g-g the center of curvature

is at infinity on the ray. The center of curvature of all points

at infinity lie on the return circle. Hence R is the center of

curvature of the generating curve.

Generating Curves & Envelopes

g

e

e

g

T

N

P

M

W0

R0

g'

g'

R

P


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Aranhold’s First Theorem, Another Proof:

• Inflection circle is the locus of points whose

infinitesimally separated positions lie on a straight line

connecting that point to the inflection pole, W0.

• For inverted motion the inflection and return circles

exchange their roles. The return circle in inverted motion

is the locus of points whose three infinitesimally

separated positions lie on a straight line RR0.

• If the straight line generating curve coincides with RR0

then the envelope becomes a cusp.

Corollary: If a straight line on the moving plane always

passes through a fixed point, then that point is on the

return circle.

Generating Curves & Envelopes
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Aranhold’s Second Theorem: The inflection circle is the

locus of centers of curvatures of all generating curves

whose envelopes are straight lines.

Using kinematic inversion and Aranhold’s first theorem this

can be proven.

Generating Curves & Envelopes
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Example: Consider a disk cam with flat faced translating

follower.

Recall from Machine Elements courses and Kinematic Synthesis of

Mechanisms that undercutting ( < 0) is a situation where one cannot

realize the desired follower motion with the cam. Further, to avoid high

contact stresses radius of curvature of the cam surface has to be

controlled.

Generating Curves & Envelopes

ME 519 Kinematic Analysis of Mechanisms
https://nirav56me.weebly.com/blog/cam-follower



Undercutting in Cams

ME 519 Kinematic Analysis of Mechanisms

J. E. Shigley(?)



Undercutting in Cams

ME 519 Kinematic Analysis of Mechanisms

Cam Profile Generation for Cam-Spring Mechanism With Desired Torque, Gao Fei, Yannan Liu, Journal 

of Mechanisms and Robotics 10(4), DOI: 10.1115/1.4040270



Undercutting in Cams
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https://www.slideshare.net/YatinSingh3/cams-and-followers



Undercutting in Gears

ME 519 Kinematic Analysis of Mechanisms

https://www.quora.com/What-is-undercutting-in-gear



Example: Consider a disk cam with flat faced translating

follower.

It is required to determine the radius of curvature of every contact

point, M, as a function of 𝑟𝑏, 𝑥, ሶ𝑥 and ሷ𝑥.

Generating Curves & Envelopes
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O

rb

x

rb + x

M



Example: Consider a disk cam with flat faced translating

follower.

By kinematic inversion fix the cam and let the follower rotate around it.

Now the follower is the generating curve and the cam is the envelope!

Generating Curves & Envelopes
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O

rb

x

rb + x

M

O

rb

x

rb + x

M



Example: Consider a disk cam with flat faced translating

follower.

The pole, P, is at the intersection of normal of the cam profile at M and

a perpendicular drawn to the follower path from O.

Generating Curves & Envelopes
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O

rb

x

rb + x

M

P



Example: Consider a disk cam with flat faced translating

follower.

According to Aranhold’s first theorem the center of curvature, E, of the

envelope, e-e, (i.e. the cam) lies on the return circle.

According to corollary to Aranhold’s first theorem O lies on the return

circle.

Generating Curves & Envelopes
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O

rb

x

rb + x

M

P



Example: Consider a disk cam with flat faced translating

follower.

According to corollary to Aranhold’s first theorem O lies on the return

circle.

Using P, E and O return circle is drawn.

Generating Curves & Envelopes
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O

rb

x

rb + x

M

P

E



Example: Consider a disk cam with flat faced translating

follower.

Pole tangent is tangent to the return circle at P.

Pole normal is perpendicular to pole tangent.

Inflection circle is the mirror image of the return circle about pole

tangent.

Generating Curves & Envelopes
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O

rb

x

rb + x

M

P

E
T
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Example: Consider a disk cam with flat faced translating

follower.

𝑃𝐸 = 𝑃𝑊 (inflection and return circles are mirror images of each

other with respect to pole tangent).

𝜌 = 𝐸𝑀 = 𝐸𝑃 + 𝑟𝑏 + 𝑥
𝐸𝑃 = 𝑃𝑊
𝜌 = 𝑟𝑏 + 𝑥 + 𝑃𝑊

Generating Curves & Envelopes
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O

rb

x

rb + x

M

P

E
T

N
W



Example: Consider a disk cam with flat faced translating

follower.

For a cam rotating at constant speed:

Ԧ𝑎𝑃 = 𝜔2𝑃𝑊

The vertical component of Ԧ𝑎𝑃 is ሷ𝑥.
ሷ𝑥

𝑎𝑃
=

𝑃𝑊

𝑃𝑊0

𝑃𝑊 =
ሷ𝑥

𝑎𝑃
𝑃𝑊0 =

ሷ𝑥 𝑃𝑊0

𝜔2 𝑃𝑊0

𝑃𝑊 =
ሷ𝑥

𝜔2

Recall

𝜌 = 𝑟𝑏 + 𝑥 + 𝑃𝑊

so

𝜌 = 𝑟𝑏 + 𝑥 +
ሷ𝑥

𝜔2
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Example: Consider a disk cam with flat faced translating

follower.

𝜌 = 𝑟𝑏 + 𝑥 +
ሷ𝑥

𝜔2

This equation proves to be useful in determining the radius of

curvature of the cam both due to contact stresses and undercutting.
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M
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Example: Consider cycloidal motion rise curve of height H

during  cam rotation.

Equation of normalized motion curve is:

𝑥

𝐻
=
1

𝜋

𝜋𝜃

𝛽
−
1

2
𝑠𝑖𝑛

2𝜋𝜃

𝛽

ሶ𝑥

𝐻
=
1

𝜋

𝜋 ሶ𝜃

𝛽
−
2𝜋 ሶ𝜃

2𝛽
𝑐𝑜𝑠

2𝜋𝜃

𝛽
=

ሶ𝜃

𝛽
1 − 𝑐𝑜𝑠

2𝜋𝜃

𝛽

ሷ𝑥

𝐻
=
2𝜋 ሶ𝜃2

𝛽2
𝑠𝑖𝑛

2𝜋𝜃

𝛽

𝜌 = 𝑟𝑏 + 𝑥 +
ሷ𝑥

𝜔2

𝜌 = 𝑟𝑏 +
𝐻

𝜋

𝜋𝜃

𝛽
−
1

2
𝑠𝑖𝑛

2𝜋𝜃

𝛽
+

𝐻

𝜔2

2𝜋 ሶ𝜃2

𝛽2
𝑠𝑖𝑛

2𝜋𝜃

𝛽

define

𝜌′ =
𝜌

𝑟𝑏
, 𝐻′ =

𝐻

𝑟𝑏

Generating Curves & Envelopes
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Example: Consider cycloidal motion rise curve of height H

during  cam rotation.

𝜌′ = 1 +
𝐻′𝜃

𝛽
+
𝐻′

2𝜋

2𝜋

𝛽

2

− 1 𝑠𝑖𝑛
2𝜋𝜃

𝛽

Differentiate this equation with respect to  to obtain min:

i. For > 152.1o min = rb

ii. For < 152.1o

𝜌′𝑚𝑖𝑛 = 1 −
𝐻′

2𝜋
𝑡𝑎𝑛

2𝜋𝜃𝑚
𝛽

−
2𝜋𝜃𝑚
𝛽

where

𝜃𝑚 =
𝛽

2𝜋
𝑐𝑜𝑠−1

1

1 −
2𝜋
𝛽

2 ,
𝛽

2
< 𝜃𝑚 <

3𝛽

4

• To realize motion 𝜌′ > 0

• To control contact stresses 𝜌𝑚𝑖𝑛 should be controlled.

Generating Curves & Envelopes
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https://en.wikipedia.org/wiki/Curve_of_constant_width#/media/File:Lens_Rotating_in_Triangle.gif

Example: Constant Breadth (Diameter) Cams

Biangle in a triangle

Generating Curves & Envelopes
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https://en.wikipedia.org/wiki/Curve_of_constant_width#/media/File:Reuleaux_triangle_Animation.gif

Example: Constant Breadth (Diameter) Cams

Reuleaux Triangle

Generating Curves & Envelopes
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https://upload.wikimedia.org/wikipedia/commons/b/ba/Wankel-1.jpg

Example: Constant Breadth (Diameter) Cams

Wankel (Rotary/Pistonless) Engine

Generating Curves & Envelopes
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https://www.youtube.com/watch?v=ENnLMWD03HQ

Example: Constant Breadth (Diameter) Cams

Generating Curves & Envelopes



ME 519 Kinematic Analysis of Mechanisms

https://www.europeana.eu/portal/en/record/2020801/dmglib_handler_image_6868023.html

Generating Curves & Envelopes

Example: Constant Breadth (Diameter) Cams

Unlike regular cams which are open kinematic pairs,

constant breadth cams are form closed. They do not jump

and good for high speed applications however their design

and production are complex compared to force closed cams.



Example: Constant Breadth

(Diameter) Cams

In a constant breadth cam

there are two generating

curves and two envelopes

(upper and lower). Let 1

denote upper and 2 lower.

For movability the contact

points M1, M2 and P must be

collinear all the times.

ME 519 Kinematic Analysis of Mechanisms

Eres Söylemez (unpublished ME 519 lecture notes)

Generating Curves & Envelopes



Brunell’s First Theorem: The

normal at the point of tangency

between a constant breadth cam

and its follower must be collinear.

𝜌1 = 𝑟𝑏1 + 𝑥 +
ሷ𝑥

𝜔2

Aranhold’s first theorem states that

centers of curvature of M1 and M2

lay on the return circle (single

because single follower!) which

implies these centers of curvatures

must be coincident.

Let D be the distance between the

two followers:

𝜌1 + 𝜌2 = 𝐷

ME 519 Kinematic Analysis of Mechanisms

Eres Söylemez (unpublished ME 519 lecture notes)

Generating Curves & Envelopes



𝜌1 + 𝜌2 = 𝐷

𝜌1 = 𝑟𝑏1 + 𝑥 +
ሷ𝑥

𝜔2

𝜌2 = 𝑟𝑏2 − 𝑥 −
ሷ𝑥

𝜔2

𝑟𝑏1 + 𝑟𝑏2 = 𝐷

𝑟𝑏2 = 𝐷 − 𝑟𝑏1

ME 519 Kinematic Analysis of Mechanisms

Eres Söylemez (unpublished ME 519 lecture notes)
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Brunell’s Second Theorem: The

sum of curvatures of points of

constant breadth cam is equal to

the through diameter D.

Any curve (not only circular arcs)

satisfying Brunell’s two theorems

can be used for constant breadth

cams.

ME 519 Kinematic Analysis of Mechanisms

Eres Söylemez (unpublished ME 519 lecture notes)

Generating Curves & Envelopes



(Kinematically) Equivalent Linkages

ME 519 Kinematic Analysis of Mechanisms

The unfamiliar mechanisms may be replaced by a
kinematically equivalent mechanism which is familiar.
Higher kinematic pairs may be replaced by lower ones.

Kinematic equivalence is defined in accordance with the
purpose of the kinematic analysis, that is equivalent
mechanism should have identical kinematic behavior with
the original mechanism for the purpose of the analysis.

Equivalent linkages may be used for:

1. Determination of velocities, accelerations (or sometimes
higher order derivatives),

2. Determination of motion of a link of a mechanism up to
a certain order,

3. Determination of path curvature.

Four-bar, slider crank and its inversions are the most
familiar equivalent linkages.



(Kinematically) Equivalent Linkages

ME 519 Kinematic Analysis of Mechanisms

https://mashayekhi.iut.ac.ir/sites/mashayekhi.iut.ac.ir/files//files_course/equivalent_linkage_me

thod_from_barton.pdf



(Kinematically) Equivalent Linkages

ME 519 Kinematic Analysis of Mechanisms

https://mashayekhi.iut.ac.ir/sites/mashayekhi.iut.ac.ir/files//files_course/equivalent_linkage_me

thod_from_barton.pdf



(Kinematically) Equivalent Linkages

ME 519 Kinematic Analysis of Mechanisms

https://mashayekhi.iut.ac.ir/sites/mashayekhi.iut.ac.ir/files//files_course/equivalent_linkage_me

thod_from_barton.pdf



(Kinematically) Equivalent Linkages

ME 519 Kinematic Analysis of Mechanisms

Example: Consider point E on the moving plane. At the

instant considered the radii of curvature of the fixed (OP)

and moving (O) centrodes are known.

The inflection circle diameter is
1

𝛿
=

1

𝑟Π
−
1

𝑟𝑃
=
1

3
−
1

4
=

1

12
, 𝛿 = 12



(Kinematically) Equivalent Linkages

ME 519 Kinematic Analysis of Mechanisms

Example:

One may determine center of curvature of any point on the

moving plane by Bobillier’s theorem (Application Examples

Case 2).

Select two arbitrary points, A and B on the moving plane

and determine their centers of curvature, A0 and B0 which

are unique.

By selecting different points, A and B, one may obtain

infinitely many (four free parameters, say rA, A, rB and B)

four bar mechanisms approximating the motion of point E

(and therefore the moving plane) in the infinitesimal

neighborhood of the design position to the second order (i.e.

position, tangent and curvature or infinitesimally separated

three positions or position, velocity and acceleration).



(Kinematically) Equivalent Linkages

ME 519 Kinematic Analysis of Mechanisms

Example:



(Kinematically) Equivalent Linkages

ME 519 Kinematic Analysis of Mechanisms

Example:



(Kinematically) Equivalent Linkages
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Example:



(Kinematically) Equivalent Linkages
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Example:



(Kinematically) Equivalent Linkages
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Example:



(Kinematically) Equivalent Linkages
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Example:



(Kinematically) Equivalent Linkages

ME 519 Kinematic Analysis of Mechanisms

Example:

One may determine center of curvature of any point on the

moving plane by Bobillier’s theorem (Application Examples

Case 2).

Select two arbitrary points, A and B on the moving plane

and determine their centers of curvature, A0 and B0 which

are unique.

One may also try a slider-crank. In this case B should be

selected on the inflection circle (therefore B0 is at infinity)

ant the slider axis passes through BW0.



(Kinematically) Equivalent Linkages

ME 519 Kinematic Analysis of Mechanisms

Example:



(Kinematically) Equivalent Linkages

ME 519 Kinematic Analysis of Mechanisms

Example:



(Kinematically) Equivalent Linkages

ME 519 Kinematic Analysis of Mechanisms

Example: Consider two circles of equal diameter (say R =

1), one being fixed and other rolling around without

slipping.
1

𝛿
=

1

𝑟Π
−
1

𝑟𝑃
=
1

1
−

1

−1
= 2, 𝛿 =

1

2

To generate a straight line motion one may utilize the

inflection pole, W0.

Rather than using a planetary gear set one may

approximate this motion using a four bar mechanism.

Select two arbitrary points, A and B on the moving plane

and determine their centers of curvature, A0 and B0 using

Euler-Savary equation.



(Kinematically) Equivalent Linkages

ME 519 Kinematic Analysis of Mechanisms

Example: Consider two circles of equal diameter (say R =
1), one being fixed and other rolling around without
slipping.

Let 𝐴 2, 45° and B 2, 135°

1

𝑟
−
1

𝑟𝑐
𝑠𝑖𝑛𝜓 =

1

𝛿

For A:

1

2
−
1

𝑟𝑐
𝑠𝑖𝑛45° =

1

Τ1 2
, 𝑟𝑐 = −

2 2

3

For B:

1

2
−
1

𝑟𝑐
𝑠𝑖𝑛135° =

1

Τ1 2
, 𝑟𝑐 = −

2 2

3

𝐴0 −
2 2

3
, 45° , 𝐵0 −

2 2

3
, 135°



(Kinematically) Equivalent Linkages

ME 519 Kinematic Analysis of Mechanisms

Example: Consider two circles of equal diameter (say R =

1), one being fixed and other rolling around without

slipping.



(Kinematically) Equivalent Linkages

ME 519 Kinematic Analysis of Mechanisms

Example: Consider two circles with a diameter ratio of n,

both connected to the fixed link by revolute joints at their

centers and rolling without slipping (simple gears). It is

desired to replace them with a four-bar linkage for a limited

range of rotation.

𝑛 = 𝑅23 = −
𝑟2
𝑟3
= −

𝑇2
𝑇3

=
𝜔3

𝜔2

𝛿 =
𝑛

1 + 𝑛 2 2 3

P

A0 B0

r2

r3



Suppose there are two different moving planes and superimposed
such that:

• Poles of both planes are coincident. Then, all points on both
planes are coincident at this instant and this is called one
point contact.

• Poles and pole tangents of both planes are coincident. Then
coincident points on two planes share the same path tangent
(or linear velocity for the same angular velocity of both planes)
and this is called two point contact.

• Poles, pole tangents and inflection circle diameters are equal.
Then coincident points on two planes have the same radius of
curvature (or acceleration for the same angular velocity and
acceleration of both planes) and this is called three point
contact.

Is it possible to have the same rate of change of curvature for both
planes or four point contact?

3. Cubic of Stationary Curvature

(Four Infinitesimally Separated Positions)

ME 519 Kinematic Analysis of Mechanisms



Is it possible to have the same rate of change of curvature for

both planes or four point contact?

Consider quadratic form of the Euler-Savary equation

𝜌 =
𝑟2

𝛿𝑠𝑖𝑛𝜓 − 𝑟

Differentiating this equation with respect to pole

displacement yields:

𝑑𝜌

𝑑𝑠
=
2𝑟𝑑𝑟𝑑𝑠 𝛿𝑠𝑖𝑛𝜓 − 𝑟 − 𝑟2 𝑑𝛿

𝑑𝑠𝑠𝑖𝑛𝜓 + 𝛿𝑐𝑜𝑠𝜓𝑑𝜓
𝑑𝑠 −

𝑑𝑟
𝑑𝑠

𝛿𝑠𝑖𝑛𝜓 − 𝑟 2

3. Cubic of Stationary Curvature

(Four Infinitesimally Separated Positions)
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Is it possible to have the same rate of change of curvature for

both planes or four point contact?

𝑑𝜌

𝑑𝑠
=
2𝑟𝑑𝑟𝑑𝑠 𝛿𝑠𝑖𝑛𝜓 − 𝑟 − 𝑟2 𝑑𝛿

𝑑𝑠𝑠𝑖𝑛𝜓 + 𝛿𝑐𝑜𝑠𝜓𝑑𝜓
𝑑𝑠 −

𝑑𝑟
𝑑𝑠

𝛿𝑠𝑖𝑛𝜓 − 𝑟 2

3. Cubic of Stationary Curvature

(Four Infinitesimally Separated Positions)

ME 519 Kinematic Analysis of Mechanisms

P

N

T


A(r,)



r

C(rC,)

r

P’’

P’

*

-ds

d

A’

T’d

(r,90o)

(rP,90o)

d

dr

d



𝜓∗ = 𝜓 + 𝑑𝜓
𝑃′𝑃′′ = 𝑑𝑟

−
𝑑𝑟

𝑑𝑠
=

𝑃′𝑃′′

𝑃𝑃′
= 𝑐𝑜𝑠𝜓∗

𝑐𝑜𝑠𝜓∗ = 𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝑑𝜓 − 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝑑𝜓
𝑐𝑜𝑠𝑑𝜓 = 1, 𝑠𝑖𝑛𝑑𝜓 = 𝑑𝜓
𝑐𝑜𝑠𝜓 ≫ 𝑑𝜓

−
𝑑𝑟

𝑑𝑠
= 𝑐𝑜𝑠𝜓

𝐴𝐴′ = ρ𝑑𝛼 = −𝑟𝑑𝜃

𝑑𝜓 = 𝑑𝛼 − 𝑑𝜀 = −
𝑟

𝜌
𝑑𝜃 − 𝑑𝜀

3. Cubic of Stationary Curvature

(Four Infinitesimally Separated Positions)
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P

N

T


A(r,)



r

C(rC,)

r

P’’

P’

*

-ds

d

A’

T’d

(r,90o)

(rP,90o)

d

dr

d



𝑑𝜓 = 𝑑𝛼 − 𝑑𝜀 = −
𝑟

𝜌
𝑑𝜃 − 𝑑𝜀

𝑑𝜓

𝑑𝑠
= −

𝑟

𝜌

𝑑𝜃

𝑑𝑠
−
𝑑𝜀

𝑑𝑠
,
𝑑𝜃

𝑑𝑠
= −

1

𝛿

−𝑟𝑃𝑑𝜀 = −𝑑𝑠,
𝑑𝜀

𝑑𝑠
=
1

𝑟𝑃
𝑠𝑜

𝑑𝜓

𝑑𝑠
=

𝑟

𝜌𝛿
−
1

𝑟𝑃
from Euler-Savary equation
𝑑𝜓

𝑑𝑠
=
𝑠𝑖𝑛𝜓

𝑟
−
1

𝑟𝑃
−
1

𝛿
1

𝛿
=

1

𝑟Π
−
1

𝑟𝑃
𝑑𝜓

𝑑𝑠
=
𝑠𝑖𝑛𝜓

𝑟
−
1

𝑟Π

3. Cubic of Stationary Curvature

(Four Infinitesimally Separated Positions)

ME 519 Kinematic Analysis of Mechanisms

P

N

T


A(r,)



r

C(rC,)

r

P’’

P’

*

-ds

d

A’

T’d

(r,90o)

(rP,90o)

d

dr

d



Substitution yields:

𝑑𝜌

𝑑𝑠
=

𝑟

𝛿𝑠𝑖𝑛𝜓 − 𝑟 2
−𝑟𝑠𝑖𝑛𝜓

𝑑𝛿

𝑑𝑠
− 3𝛿𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜓 + 𝑟𝑐𝑜𝑠𝜓 1 +

𝛿

𝑟Π
1

𝛿
=

1

𝑟Π
−
1

𝑟𝑃
, 1 =

𝛿

𝑟Π
−
𝛿

𝑟𝑃
,
𝛿

𝑟Π
= 1 +

𝛿

𝑟𝑃
𝑑𝜌

𝑑𝑠
=

𝑟

𝛿𝑠𝑖𝑛𝜓 − 𝑟 2
−𝑟𝑠𝑖𝑛𝜓

𝑑𝛿

𝑑𝑠
− 3𝛿𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜓 + 𝑟𝑐𝑜𝑠𝜓 2 +

𝛿

𝑟𝑃

Define

𝑚 = −
3𝛿

Τ𝑑𝛿 𝑑𝑠
,
1

ℓ
=

2

3𝑟Π
−

1

3𝑟𝑃
=
1

3

2

𝛿
+
1

𝑟𝑃

𝑚 and ℓ are only functions of the moving plane,

independent of selection of point A.

3. Cubic of Stationary Curvature

(Four Infinitesimally Separated Positions)

ME 519 Kinematic Analysis of Mechanisms



Substitution yields:

𝑑𝜌

𝑑𝑠
=

3𝑟2𝛿

𝛿𝑠𝑖𝑛𝜓 − 𝑟 2

𝑠𝑖𝑛𝜓

𝑚
+
𝑐𝑜𝑠𝜓

ℓ
−
𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜓

𝑟

𝑑𝜌

𝑑𝑠
=

3𝑟2𝛿

𝛿𝑠𝑖𝑛𝜓 − 𝑟 2
𝐾 𝑟,𝜓

𝐾 𝑟, 𝜓 is known as cubic of stationary curvature only a

function of moving plane.

3. Cubic of Stationary Curvature

(Four Infinitesimally Separated Positions)

ME 519 Kinematic Analysis of Mechanisms



Define

𝜆1 =
1

𝜌

𝑑𝜌

𝑑𝛼
𝐴𝐴′ = 𝜌𝑑𝛼 = 𝑟𝑑𝜃

Define the operator:
𝑑

𝑑𝛼
= −

𝜌

𝑟

𝑑

𝑑𝜃
= −

𝜌

𝑟

𝑑𝑠

𝑑𝜃

𝑑

𝑑𝑠
=
𝜌𝛿

𝑟

𝑑

𝑑𝑠
𝑑𝜌

𝑑𝑠
=

3𝑟2𝛿

𝛿𝑠𝑖𝑛𝜓 − 𝑟 2
𝐾 𝑟, 𝜓

can be written as

𝑑𝜌

𝑑𝛼
=

3𝜌𝛿2𝑟

𝛿𝑠𝑖𝑛𝜓 − 𝑟 2𝐾 𝑟, 𝜓

Locus of points on the moving plane that has the same rate of

change of curvature. Also known as 𝜆1 curve.

3. Cubic of Stationary Curvature

(Four Infinitesimally Separated Positions)

ME 519 Kinematic Analysis of Mechanisms

P

N

T


A(r,)



r

C(rC,)

r

P’’

P’

*

-ds

d

A’

T’d

(r,90o)

(rP,90o)

d

dr

d



𝑑𝜌

𝑑𝛼
=

3𝜌𝛿2𝑟

𝛿𝑠𝑖𝑛𝜓 − 𝑟 2
𝐾 𝑟,𝜓

This equation can be expressed in Cartesian coordinates (x
in T and y in N):

𝑥 = 𝑟𝑐𝑜𝑠𝜓, 𝑦 = 𝑟𝑠𝑖𝑛𝜓
𝜆1ℓ𝑚 𝑥2 + 𝑦2 − 𝛿𝑦 2 = 3𝛿2 𝑥2 + 𝑦2 𝑚𝑥 + ℓ𝑦 − ℓ𝑚𝑥𝑦

This is a fourth order algebraic curve starting and ending at
infinity and passing through the pole (origin of the
Cartesian coordinate system) twice.

The tangents of this curve are pole tangent (x-axis) and
𝜆1𝑦 + 3𝑥 = 0.

𝜆1𝑦 + 3𝑥 = 0 is known as the quartic of derivative curvature,
locus of points on the moving plane having the same rate of
change of curvature, 𝜆1.

3. Cubic of Stationary Curvature

(Four Infinitesimally Separated Positions)

ME 519 Kinematic Analysis of Mechanisms



𝑑𝜌

𝑑𝛼
=

3𝜌𝛿2𝑟

𝛿𝑠𝑖𝑛𝜓 − 𝑟 2
𝐾 𝑟, 𝜓

For point A on the moving plane to have four point contact with a

circular arc, (for 𝜌 ≠ 0),
𝑑𝜌

𝑑𝛼
= 0 therefore curvature is stationary.

Then

𝐾 𝑟, 𝜓 =
𝑠𝑖𝑛𝜓

𝑚
+
𝑐𝑜𝑠𝜓

ℓ
−
𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜓

𝑟
= 0

in polar form or in Cartesian coordinates

𝑥2 + 𝑦2 𝑚𝑥 + ℓ𝑦 − ℓ𝑚𝑥𝑦 = 0

𝑚 = −
3𝛿

Τ𝑑𝛿 𝑑𝑠
,
1

ℓ
=
2

3

2

𝛿
+
1

𝑟𝑃

Locus of points on the moving plane having four point contact

with a circular arc and the equation is known as cubic of

stationary curvature.

3. Cubic of Stationary Curvature

Circular Arc Generation, 4 Point Contact
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To obtain the center of curvature of all points on the cubic

of stationary curvature one may utilize kinematic inversion.

Recall in inverted motion the centrodes change their roles,

m remains the same, ℓ is replaced by ℓ∗:
1

ℓ∗
=

2

3𝑟𝑃
−

1

3𝑟Π

𝑀 𝑟,𝜓 =
𝑠𝑖𝑛𝜓

𝑚
+
𝑐𝑜𝑠𝜓

ℓ∗
−
𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜓

𝑟
= 0

in polar form or in Cartesian coordinates

𝑥2 + 𝑦2 𝑚𝑥 + ℓ∗𝑦 − ℓ∗𝑚𝑥𝑦 = 0

This is known as cubic of centers of stationary curvature.

Recall the analogy with Burmester’s K and M curves.

3. Cubic of Stationary Curvature

Circular Arc Generation, 4 Point Contact
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In addition to stationary curvature further if straight line is

required, (i.e.
1

𝜌
= 0 ) such point(s) must be both on cubic of

stationary curvature and inflection circle, 𝐵 𝑟𝐵 , 𝜓𝐵 .

Then

ቑ
𝐾 𝑟𝐵 , 𝜓 =

𝑠𝑖𝑛𝜓𝐵

𝑚
+
𝑐𝑜𝑠𝜓𝐵

ℓ
−
𝑠𝑖𝑛𝜓𝐵𝑐𝑜𝑠𝜓𝐵

𝑟𝐵
= 0

𝑟𝐵 = 𝛿 𝑠𝑖𝑛𝜓𝐵

𝑡𝑎𝑛𝜓𝐵 = 𝑚
1

𝛿
−
1

ℓ

𝑡𝑎𝑛𝜓𝐵 =
2𝑟Π − 𝑟𝑃

𝑟Π − 𝑟𝑃
𝑑𝛿
𝑑𝑠

This point is known as Ball’s point.

Recall the analogy with Ball’s point whose four finitely separated

positions lay on a straight line.

For stationary inflection circle diameter inflection pole, W0, is the

Ball’s point.

3. Cubic of Stationary Curvature
Straight Line Generation, 4 Point Contact: Ball’s Point

ME 519 Kinematic Analysis of Mechanisms



𝑑𝜌

𝑑𝛼
= 0,

1

𝑚
= 0

𝐾 𝑟, 𝜓 = 𝑐𝑜𝑠𝜓
1

ℓ
−
𝑠𝑖𝑛𝜓

𝑟
= 0

yielding:

𝑐𝑜𝑠𝜓 = 0 or 𝑠𝑖𝑛𝜓 =
ℓ

𝑟
First one is the pole normal, second one is a circle of diameter ℓ
(𝑟𝑠𝑖𝑛𝜓 = ℓ) center on pole normal and passing through the pole.

Let

𝑡 =
𝑟

𝑠𝑖𝑛𝜓

𝜆1 =
3𝛿𝑟2

𝛿𝑠𝑖𝑛𝜓 − 𝑟 2 𝑐𝑜𝑠𝜓
1

ℓ
−
𝑠𝑖𝑛𝜓

𝑟
=

3

𝑡𝑎𝑛𝜓

𝛿

𝛿 − 𝑡

2
𝑡

ℓ
− 1

3. Cubic of Stationary Curvature
Stationary Inflection Circle Diameter, Symmetric Motion

ME 519 Kinematic Analysis of Mechanisms



Example: Cycloidal Motion Mechanisms

Hypocycloid

ME 519 Kinematic Analysis of Mechanisms

https://www.psmotion.com/news/cycloidal-curves-gears-and-racks



Example: Cycloidal Motion Mechanisms

Cycloid

ME 519 Kinematic Analysis of Mechanisms

https://www.psmotion.com/news/cycloidal-curves-gears-and-racks



Example: Cycloidal Motion Mechanisms

Epicycloid

ME 519 Kinematic Analysis of Mechanisms

https://www.psmotion.com/news/cycloidal-curves-gears-and-racks



Example: Cycloidal Motion Mechanisms

Evolvent

ME 519 Kinematic Analysis of Mechanisms

https://www.psmotion.com/news/cycloidal-curves-gears-and-racks



Example: Cycloidal Motion Mechanisms

Pericycloid

ME 519 Kinematic Analysis of Mechanisms

https://www.psmotion.com/news/cycloidal-curves-gears-and-racks



Example: Cycloidal Motion Mechanism

ME 519 Kinematic Analysis of Mechanisms

Gear ratio:

𝑅 =
𝑟Π
𝑟𝑃
, 𝑟𝑃 = 𝑛𝑟Π, 𝑡 = 2𝑟Π

Moving centrode:

𝑟 = 𝑡𝑠𝑖𝑛𝜓

For point A on 
1

𝑟Π
−
1

𝑟𝑃
=
1

𝛿
, 𝑟𝑃 = 𝑅𝑟Π

1

𝛿
= 1 − 𝑅

1

𝑟Π
1

ℓ
=

2

3𝑟Π
−

1

3𝑟𝑃
=
2 − 𝑅

3𝑟Π

𝛿 =
𝑟Π

1 − 𝑅
=

𝑟Π𝑟𝑃
𝑟𝑃 − 𝑟Π



P

P

N

T



Example: Cycloidal Motion Mechanism
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𝜆1 =
1

1 − 2𝑛 𝑡𝑎𝑛𝜓
=
1

𝜌

𝑑𝜌

𝑑𝛼

𝜌 =
𝑟2

𝛿𝑠𝑖𝑛𝜓 − 𝑟

𝜌 =
4𝑟Π

2𝑠𝑖𝑛2𝜓

𝛿𝑠𝑖𝑛𝜓 − 2𝑟Π𝑠𝑖𝑛𝜓

𝛿 =
𝑟Π

1 − 𝑅

𝜌 =
4 1 − 𝑅 𝑟Π𝑠𝑖𝑛𝜓

2𝑅 − 1 

P

P

N

T



Example: Square with Rounded Corners

ME 519 Kinematic Analysis of Mechanisms

Eres Söylemez (unpublished ME 519 Lecture 

Notes)

𝑛 =
1

𝑅
=
𝑟𝑃
𝑟Π
𝜖ℕ

𝑛 =
𝜔𝑝𝑙𝑎𝑛𝑒𝑡 − 𝜔𝑎𝑟𝑚
𝜔𝑟𝑖𝑛𝑔 − 𝜔𝑎𝑟𝑚

=
𝑟𝑃
𝑟Π

Centrodes being circles:
𝑑𝛿

𝑑𝑠
= 0,

1

𝑚
= 0

𝐾 𝑟, 𝜓 = 𝑐𝑜𝑠𝜓
1

ℓ
−
𝑠𝑖𝑛𝜓

𝑟
1

ℓ
=

2

3𝑟Π
−

1

3𝑛𝑟Π
=

2𝑛 − 1 𝑛 − 1

2𝑛𝑟Π
𝑐𝑜𝑠𝜓 = 0

𝑟 =
3𝑛𝑟Π
2𝑛 − 1

𝑠𝑖𝑛𝜓

Circle!



Example: Square with Rounded Corners
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Four point contact with a straight line requires the point to

be:

• Cubic of stationary curvature

• Inflection circle

Since inflection circle diameter is constant Ball’s point is

the inflection pole.
1

𝛿
=

1

𝑟Π
−
1

𝑟𝑃
=

1

𝑟Π
−

1

𝑛𝑟Π
=
𝑛 − 1

𝑛𝑟Π
Consider n = 4

ℓ =
12𝑟Π
7

, 𝛿 =
4𝑟Π
3

The inflection pole is
𝑟Π

3
above the center of the planet and

this point at the design position describes an approximate

straight line deviating from it as it goes away.



Example: Square with Rounded Corners
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When the arm rotates
𝜋

4
the

planet rotates 𝜋 radians

relative to the arm and has

the minimum radius of

curvature.

𝑟 = 𝑟Π −
𝑟Π
3
=
2𝑟Π
3

1

𝛿
=
1

𝑟
−
1

𝑟𝑐

𝜌𝑚𝑖𝑛 =
2𝑟Π
3

Eres Söylemez (unpublished ME 519 Lecture 

Notes)



Example: Production of Circular Arcs on Lathes

ME 519 Kinematic Analysis of Mechanisms

At the design position the mechanism is

symmetric therefore
1

𝑚
= 0

𝐾 𝑟,𝜓 = 𝑐𝑜𝑠𝜓
1

ℓ
−
𝑠𝑖𝑛𝜓

𝑟
= 0

degenerates into pole normal and circle.

𝜌𝐷 =
𝑟2

𝛿 − 𝑟
=

𝐴𝐷 2

𝐵𝐷
, 𝛿 = 𝐴𝐵

A0

r

A

B

D



Example: Production of Circular Arcs on Lathes
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𝜌𝐷 =
𝑟2

𝛿 − 𝑟
=

𝐴𝐷 2

𝐵𝐷
𝐴𝐷 = 4
𝐵𝐷 = 1

𝜌𝐷 =
42

1
= 16 𝑙𝑒𝑛𝑔𝑡ℎ 𝑢𝑛𝑖𝑡𝑠



Cubic of Stationary Curvature of a Four Bar

ME 519 Kinematic Analysis of Mechanisms

In polar form

𝐾 𝑟, 𝜓 =
𝑠𝑖𝑛𝜓

𝑚
+
𝑐𝑜𝑠𝜓

ℓ
−
𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜓

𝑟
= 0

Τ𝑟 𝑐𝑜𝑠𝜓

𝑚
+

Τ𝑟 𝑠𝑖𝑛𝜓

ℓ
= 1

Define

𝜇 =
𝑟

𝑐𝑜𝑠𝜓
, 𝜆 =

𝑟

𝑠𝑖𝑛𝜓
𝜇

𝑚
+
𝜆

ℓ
= 1

In Cartesian coordinates

𝜇 =
𝑥2 + 𝑦2

𝑥
, 𝜆 =

𝑥2 + 𝑦2

𝑦
𝐾𝜇 = 𝑥2 + 𝑦2 − 𝜇𝑥 = 0, 𝐾𝜆 = 𝑥2 + 𝑦2 − 𝜆𝑦 = 0

Two circles with centers on pole tangent and normal respectively.



Cubic of Stationary Curvature of a Four Bar
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𝐾𝜇 = 𝑥2 + 𝑦2 − 𝜇𝑥 = 0,𝐾𝜆 = 𝑥2 + 𝑦2 − 𝜆𝑦 = 0

This system of equations form the pencils of circles. The

intersection point of pencils of circles yield a point on

𝐾 𝑟,𝜓 .

The idea is for known ℓ (say 7) and 𝑚 (say 13) draw line LM.

Select any point on LM, say X.



Cubic of Stationary Curvature of a Four Bar

ME 519 Kinematic Analysis of Mechanisms

Draw horizontal and vertical lines through X intersecting

PN at 𝜆 and PT at 𝜇.

Draw 𝐾𝜆 and 𝐾𝜇 , intersection yields a point on 𝐾 𝑟,𝜓 .



Cubic of Stationary Curvature of a Four Bar

ME 519 Kinematic Analysis of Mechanisms

Change X and obtain another point on 𝐾 𝑟, 𝜓 .



Procedure for the Four Bar
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1. Determine the pole, pole tangent, pole normal and

inflection pole utilizing Bobillier’s construction.
• A0A and B0B form two pole rays therefore P is at intersection,

• QAB is at the intersection of A0B0 and AB,

• ∢𝑄𝐴𝐵𝑃𝐴 = ∢𝐵𝑃𝑇 = 𝛼

•
1

𝑟
−

1

𝑟𝑐
𝑠𝑖𝑛𝜓 =

1

𝛿
should yield the same  for the pair A A0 or B B0.



Procedure for the Four Bar
1. Determine the pole, pole tangent, pole normal and

inflection pole utilizing Bobillier’s construction.
• A0A and B0B form two pole rays therefore P is at intersection,

• QAB is at the intersection of A0B0 and AB,

• ∢𝑄𝐴𝐵𝑃𝐴 = ∢𝐵𝑃𝑇 = 𝛼

•
1

𝑟
−

1

𝑟𝑐
𝑠𝑖𝑛𝜓 =

1

𝛿
should yield the same  for the pair A-A0 or B-B0.

𝜓𝐴 = 53.91°, 𝑟𝐴 = 10.28, 𝑟𝐴0 = 13.28 → 𝛿 = 56.31

𝜓𝐵 = 11.83°, 𝑟𝐵 = 6.412, 𝑟𝐴0 = 14.41 → 𝛿 = 56.35

ME 519 Kinematic Analysis of Mechanisms



Procedure for the Four Bar
2. Draw perpendiculars to AP and BP though A and B.

These perpendiculars intersect PT and PN at AM, AL, BM and

BL.

ME 519 Kinematic Analysis of Mechanisms



Procedure for the Four Bar
3. Complete rectangles PAMALA* and PBMBLB*.
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Procedure for the Four Bar
4. Line A*B* intersects N at L and T at M.

ME 519 Kinematic Analysis of Mechanisms



Procedure for the Four Bar
5. Select an X on LM and determine  and  to draw the

pencils of circles. Intersection of circles yield a point on

𝐾 𝑟,𝜓 .
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Procedure for the Four Bar
5. (cont’ed) Change location of X on LM and determine new

 and  to draw the new pencils of circles. Intersection of

circles yield another point on 𝐾 𝑟,𝜓 .
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Procedure for the Four Bar
6. For M 𝑟,𝜓 , center of stationary curvature, one may

determine the 𝐾 𝑟,𝜓 of the inverted motion.

ME 519 Kinematic Analysis of Mechanisms



Determination of a Point on K(r,)

ME 519 Kinematic Analysis of Mechanisms

Eres Söylemez (unpublished)



Determination of a Point on K(r,)

ME 519 Kinematic Analysis of Mechanisms

Eres Söylemez (unpublished)



Determination of a Point on K(r,)

ME 519 Kinematic Analysis of Mechanisms
Eres Söylemez (unpublished)



Use of K(r,) and M(r,)

ME 519 Kinematic Analysis of Mechanisms

 

At this instant path of point C approximates a circle to the fourth order (i.e. contacts

circle, has the same tangent and radius of curvature and further, the rate of change of

radius of curvature is zero) therefore is expected to trace an approximate circular path in

the vicinity of this position. D being the center of the circle during that instant is

stationary therefore D0D is in dwell.


