## 2. Kinematic Analysis

## Slider-Crank

 $\overrightarrow{A_0A} + \overrightarrow{AB_3} = \overrightarrow{A_0B_4}$ 

This vector equation forces

 $B_3$  and  $B_4$  be a permanently

coincident point, the revolute



joint between links 3 and 4, B. This vector equation can be written using complex numbers as:

$$a_2 e^{i\theta_{12}} + a_3 e^{i\theta_{13}} = ia_1 + s_{14}$$

This is a *complex* equation in three unknowns,  $\theta_{12}$ ,  $\theta_{13}$  and  $s_{14}$ . If one of those variables (recall F =1 for a slider-crank) is known the other two can be determined.