2. Kinematic Analysis

Slider-Crank

$$
\overrightarrow{A_{0} A}+\overrightarrow{A B_{3}}=\overrightarrow{A_{0} B_{4}}
$$

This vector equation forces
B_{3} and B_{4} be a permanently coincident point, the revolute
 joint between links 3 and 4, B. This vector equation can be written using complex numbers as:
$a_{2} e^{i \theta_{12}}+a_{3} e^{i \theta_{13}}=i a_{1}+s_{14}$
This is a complex equation in three unknowns, θ_{12}, θ_{13} and s_{14}. If one of those variables (recall $\mathrm{F}=1$ for a slider-crank) is known the other two can be determined.

