- 1. Calculate the following integrals:
 - (a) $\int_0^1 dx x^{2.1}$
 - (b) $\int_0^{\pi} d\theta \sin \theta$
 - (c) $\int_0^{\pi} d\theta \sin^2 \theta$
 - (d) $\int_0^{\pi} d\theta \tan \theta$
 - (e) $\int_1^2 d\theta \frac{1}{x}$
 - (f) $\int_0^3 dx e^{-x}$
 - (g) $\int_0^3 dx x^2 e^{-x}$
 - (h) $\int_0^\infty dx e^{-x^2}$
- 2. Calculate the derivatives of the following functions with respect to x. Also evalute the value of this derivative at x = 1
 - (a) $x, x^{1.5}$
 - (b) $\cos x$, $\sin x$, $\tan x$
 - (c) $x^{2} \tan x, \frac{1}{x} \sin x$
- 3. How many atoms are there in a person of 73 kg if the composition (by mass) of human body is 65% O_2 , 18.5% C_2 , 9.5% H_2 , 3.3% N_2 , 1.5% Ca, 1% P and 0.35% other elements? (Hint: Ignore other elements)
- 4. The motion of a rocket burning its fuel at aconstant rate while moving through empty interstellar space can be described by

$$x = u_{ex}t + u_{ex}(\frac{1}{b} - t)\ln(1 - bt)$$

where u_{ex} and b are constants (u_{ex} is the exhaust velocity of the gasses at the tail of the rocket and b is proportional to the rate of fuel consumption).

- (a) Find a formula for the instantaneous velocity of the rocket
- (b) Find a formula for the instantaneous acceleration.

(c) Suppose that a rocket with $u_{ex} = 3.0 \times 10^3 \ m/s$ and $b = 7.5 \times 10^{-3} \ /s$ takes 120 s to burn all its fuel. What is the instantaneous velocity at $t = 0 \ s$? At $t = 120 \ s$

(c) What is the instantaneous acceleration at t = 0 s? At t = 120 s?