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a b s t r a c t 

In this paper, we present a deep learning-based approach, namely a dual CNN–RNN for multiple people 

tracking. We follow tracking-by-detection paradigm by first training a CNN to measure the similarity of 

two detection boxes. To solve the data association (DA) problem, we build a graph with nodes as detec- 

tions and edge costs that are the outputs of a CNN. The general minimum cost lifted multi-cut problem 

(LMP) and corresponding optimization algorithms are utilized to solve the DA problem. To tackle occlu- 

sion and ID-switch problems, an RNN network is proposed to predict the nonlinear motion of people. 

Moreover, we utilize target motion information to stitch tracklets and build long trajectories. The results 

of our experiments conducted on Multiple Object Tracking Benchmark 2016 (MOT2016) confirm the effi- 

ciency of the proposed algorithm. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Multiple object tracking (MOT) is one of the most active re-

earch areas in computer vision, video surveillance, and biometrics.

lthough there have been many algorithms proposed for track-

ng [1–4] , there are still some challenges like ID-switch and long

erm occlusion that have not been addressed thoroughly. These

ssues are getting more difficult to solve, particularly in crowded

cenes where other effective circumstances like target interactions

appen. 

Tracking-by-detection (TBD) has been the most common pro-

osed tracking framework in the past two decades [4–6] . In this

ramework, targets are first detected in all frames of a video se-

uence and then a data association algorithm is utilized to asso-

iate detections over all frames in order to build the trajectories.

bviously, advancements in both target detection and data associ-

tion lead to an enhanced performance in tracking [7,8] . In mul-

iple people tracking, the data association of detections is often a

ery challenging task due to missing detections, occlusion and tar-

et interactions in crowded environments. In recent years, there

as been much effort on the association part of tracking, which

ed to many sophisticated data association algorithms such as joint

robabilistic data association (JDPA) [9] , integer linear program-

ing (ILP) [10] , multiple hypothesis tracking (MHT) [11] , quadratic

oolean program (QBP) [12] , continuous and discrete optimiza-

ion [13] , and generalized clique graph [14,15] . In these approaches,
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he cost of pairing two detections in successive frames is computed

rom geometric or appearance cues of detection boxes. However,

he appearance descriptors, which determine whether two detec-

ions belong to the same person, remained relatively simple. 

Recently, deep learning algorithms have demonstrated signifi-

ant improvement in image and video content representation. They

rovide rich feature representations that are more reliable than

andcrafted features, which lead to improvement in many differ-

nt computer vision tasks including image classification and object

etection [16,17] . Motivated by this, we design a dual CNN–RNN

or the multiple people tracking problem. Specifically, we first pro-

ose a convolutional neural network (CNN) that provides the simi-

arity score of two detections. Next, a graph is built to get the pri-

al tracklets (i.e. target trajectories), where the detections are the

odes and the edge costs are the computed cutting costs. Here,

he data association task is cast to a lifted multicut (LM) problem

hich is solved here by Kernighan–Lin algorithm with Joins [18] .

n order to handle long term occlusions and ID-switches, we pro-

ose a novel recurrent neural network (RNN) that is capable to

redict the motion of targets. Furthermore, we use this informa-

ion to merge several tracklets to build long term trajectories. The

rovided motion estimation also boils down the ID-switch problem

here targets are crossing each other. In summary the three major

ontributions of this technique are: 

1. a CNN for determining the pairwise detection affinity cost; 

2. an RNN for nonlinear motion prediction of targets applied in

both static and moving camera scenarios; 

3. a tracklet stitching algorithm using motion patterns obtained

by the RNN in order to handle long occlusions. 

https://doi.org/10.1016/j.neucom.2019.08.008
http://www.ScienceDirect.com
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The rest of the paper is organized as follows: Section 2 re-

views related works. The proposed methodology is explained in

Section 3 . Experiments and evaluation results are presented in

Section 4 . In the end, Section 5 provides a short summary and con-

clusion. 

2. Related work 

Multiple people tracking has been widely investigated in com-

puter vision and pattern recognition. However, it becomes more

challenging in presence of effective factors on tracking results such

as illumination, crowded environment, moving camera, and target

interaction. Most proposed approaches are based on the tracking-

by-detection paradigm [10,19–21] , where the tracking problem is

cast into a data association problem between all detections ex-

tracted from the video by person detectors [22,23] . Having high

accurate detections, tracking can be done by simply associating

detections using their spatial overlap between frames [24] . Deal-

ing with inaccurate detections, Sanchez-Matilla et al. [25] suggest

to classify all detections to strong (certain) and weak (uncertain)

detections. Strong detections are used for initialization and track-

ing, and weak detections are used only to support the contin-

uation of an existing track when strong detections are missing.

Chen et al. [26] extend the MHT algorithm by enhancing detec-

tion model that include detection-scene analysis and detection–

detection analysis. 

Tracking or data association can be performed either on in-

dividual detections [19,27] or on a set of confident short track-

lets [28–31] which are generated by first performing a low level

data association to group detections. A well-known representation

of the tracking-by-detection paradigm is to present each detec-

tion as a node in a graph, where each edge represents the like-

lihood that connected detections belong to the same person. This

data association problem can be formulated as a Conditional Ran-

dom Field (CRF) inference [32] , network flow optimization [33] ,

global optimization based on maximum multi-clique [14] , globally-

optimal greedy algorithms [34] , or subgraph decomposition [35] . 

As a challenge in a tracking problem, occlusion greatly affects

the performance of tracking methods. In order to address this is-

sue, some approaches use information from other views if they are

available [10,36,37] . However, these methods are not applicable in

single view tracking. Several efforts have been made to tackle the

occlusion problem by target segmentation during tracking [38] or

body joint tracking [2,39] . Milan et al. [2] cast a joint segmentation

and tracking problem as a graphical model (i.e. Conditional Ran-

dom Field). In this method, the super-pixels need to be extracted

first which causes a high computational cost. 

By learning discriminative feature representations, deep learn-

ing has greatly helped in many computer vision applications

such as visual understanding [40,41] , semantic image segmenta-

tion [42] , and pedestrian detection [43] . In the context of tracking,

several online tracking approaches utilize CNN in order to learn

rich feature representation of targets instead of using heuristic and

hand-crafted features [44–46] . In [44] , the authors use target fea-

tures obtained by an offline pre-trained CNN to do data association

in an online manner, unlike [45] where a pre-trained CNN is tuned

during tracking continuously to adopt the appearance of targets

tracked in the observed frames. As a different problem formula-

tion, Fan et al. in [47] designed a CNN to estimate the position and

the scale of objects in the next frame using the observations of

the current and previous frames. Recently, CNN has been explored

for modeling the similarity between pairs of detections [4 8,4 9] .

In [48] , a Siamese CNN is proposed to learn spatio-temporal

affinity between two image patches. The learned features are then

combined with other contextual features using gradient boosting.

In addition to the image patches in RGB format, the associated
ptical flows are also fed to this CNN. Tang et al. [49] exploit body

art detections stacked with RGB person images as input to a CNN

or measuring the similarity. Son et al. [50] model the appearance

ith temporal coherency by designing a quadruplet CNN. As a

ifferent network structure, Milan et al. propose an end-to-end

ecurrent Neural Network (RNN) for the data association problem

n online multi-target tracking [51] . They use RNNs for temporal

rediction as well as track’s birth/death determination in each

rame. In [27] , several RNN networks have been proposed to

odel the appearance, motion and interaction of targets. However,

raining several RNNs requires much more training data as well

s computational resources. Bewley et al. [52] propose a simple

nd real time online tracking method by employing the Kalman

lter (as a linear motion predictor) and the Hungarian algorithm

as data association). Wojke et al. [46] extend the work of Bewley

t al. [52] by applying a deep association metric based on visual

ppearance. Despite real time tracking speed, online tracking

pproaches have a lower overall performance due to not seeing

ubsequent video frames at each time step. We believe that most

D-switches could be avoided by considering detections before and

fter a long occlusion. 

In our work, the association problem is formulated as a cluster-

ng task by solving a minimum cost lifted multicut problem in an

ffline manner. A CNN is proposed to reason about the similarity of

ach pair of detections. This similarity measurement in cooperation

ith other simply computed affinities form the likewise potential

or the graph optimization. In the end, by introducing a mechanism

or path prediction, the more likely tracklets to show the same per-

on are stitched together. The tracking method in [49] is the most

imilar approach to ours. It applies DeepCut [53] and DeepMatch-

ng [54] techniques in order to build the pairwise affinity. In con-

rast, our aim is to use the simple data input without help of other

ues such as optical flow, pose, or body part detections. 

. Approach 

The diagram of the proposed approach is depicted in Fig. 1 . The

nput is a sequence of video frames. We utilized a person detec-

or to extract the detection boxes from all frames. These detection

oxes are fed into our CNN for training and ultimately comput-

ng the similarity of detections. We also extracted some geometric

ues such as width, height, and position from detection boxes. Both

NN’s output and geometric cues are considered as edge costs in

he graph composition process. Here, a lifted tracking graph whose

odes are detections is constructed. This graph is optimized by

ernighan–Lin optimizer to obtain a set of primal tracklets. The

roposed RNN uses the tracklets to estimate the motion of detec-

ions in successive frames. This estimation is used in order to (1)

andle ID-switches and long-term occlusions, and (2) stitch sev-

ral tracklets in order to build a long trajectory of a target. In the

ollowing, we will discuss each process in details. 

.1. Target matching using CNN 

We present a CNN to measure the similarity of detections ex-

racted from video sequences. Later, we use these measures to de-

ne a cost for each edge connecting a pair of detections (nodes)

n the data association graph which will be explained later. A cost

s to be paid if two detections with high probability of being the

ame person are clustered to different groups. To quantify how

ikely a pair of detections identify the same person, we propose

 multi-layer deep CNN which takes two RGB detection images

s input and then outputs the similarity score of the two detec-

ions in percentage (see Fig. 2 ). For the input of the CNN, the

GB image patches are first resized to a fixed size of 140 × 60 pix-

ls and then stacked depth-wise to form a 6-channel data tensor.
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Fig. 1. The diagram of the proposed multiple people tracking algorithm. 

Fig. 2. Detections similarity computation using a CNN. The input of the network is detection pairs chosen from the video sequence, and output is the similarity score of 

each detection pair (video sequence from MOT Challenge 2016 dataset). 
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or training the network, we use the training data from MOT Chal-

enge 2016 Benchmark. The CNN has 9 layers after the input layer.

he input data is first processed by three convolutional layers, each

f them followed by a ReLU nonlinear activation function. We em-

loy stride with length two during the convolution to reduce the

ize of the images. Afterwards, there are four fully connected lay-

rs to capture correlations between features in distant parts of the

mages. To prevent over-fitting and improve overall performance,

e used a dropout rate of 50% in all fully connected layers. The

utput of the last fully connected layer is fed into a binary soft-

ax classifier which produces a distribution over the two class

abels (first/second class indicates the detections belong to the

ame/different person(s)). The output of the first class, which in-

icates the similarity of the two input detections, is used in our

racking method. Fig. 3 illustrates the structure of the designed

NN. 

.2. Pairwise affinity measure in graph 

Since the CNN can only model the appearance of the targets,

e need to consider further constraints to define the edge costs

n the data association graph, in case of mismatch errors from the

etwork or two different targets with very similar appearances. In

ther words, we need to assign a larger penalty to those edges
hat have a high appearance similarity, while the position or the

cale of the detection bounding boxes do not match. Moreover, in

rder to handle false positive detections, we incorporate a detec-

ion confidence into the edge costs. Here, we introduce our three

dditional edge costs: (1) position C p , (2) height C h and (3) de-

ection confidence C s . Each detection bounding box v ∈ V has the

ollowing properties: (1) spatio-temporal location ( t v , x v , y v ); (2)

cale h v ; and (3) detection confidence s v . Given two detections v

nd w connected by the edge { v , w } = e ∈ E ∪ E ′ , we get a similar-

ty score from the CNN denoted by C e . The Euclidean distance of

wo detection bounding boxes in pixels is denoted by dist vw 

, and fr

enotes the frame rate of the video sequence. These three addi-

ional edge costs are described as follows: 

osition: 

 ist s = 

d ist v w 

min (h v , h w 

) 
× f r 

abs (t v − t w 

) 
(1) 

 p = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 , i f dist s < d min 

1 − dist s − d min 

d max − d min 

, i f d min ≤ dist s ≤ d max 

0 , i f dist s > d max 

. (2) 

graysoul
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Fig. 3. The structure of the proposed CNN for similarity computation of two detections. 
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Height: 

height s = 

abs (h v − h w 

) 

min (h v , h w 

) 
× f r 

abs (t v − t w 

) 
(3)

 h = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 , i f height s < h min 

1 − height s − h min 

h max − h min 

, i f h min ≤ height s ≤ h max 

0 , i f height s > h max 

. (4)

Detection score: 

score = min (s v , s w 

) (5)

 s = 

{
1 , i f score ≥ s threshold 

score, i f score < s threshold 
. (6)

The final edge cost is: 

 t (v , w ) = C e ∗ C p ∗ C h ∗ C s (7)

In Eqs. (1) and (3) , the Euclidean distance and height difference

are first normalized by the height of the detection boxes. Since

the height is related to the distance of the target from the cam-

era, it can be considered as a scale factor. If a target is close to

the camera, the changes in distance or height would also be large

and vice versa. This normalization step is especially helpful for rel-

atively low camera position. Then the position and height changes

are divided by the frame gap and multiplied by the frame rate. As

a result, the dist s and height s are the normalized change rate of the

distance and height. The parameters { d max , d min , h max , h min } are in-

put parameters for each video sequence and are calculated using

all video sequences in MOT2016 training dataset. In the final im-

plementation, we prepared two different settings for these param-

eters; one for static cameras and the other for moving cameras,

because the movement and height changes of moving cameras are

larger than static cameras on average. 

As for detection cost, if the minimum value of the two confi-

dence scores is less then a predefined threshold, then we assign a

lower penalty to the edge cost. The detection confidence score de-

pends on the performance of the person detector, which might be

affected by light condition, contrast of the image frame, crowded-

ness of the scene etc. 
.3. Graph decomposition by lifted multicut 

For tracking multiple people, we use the popular tracking-by-

etection framework, which utilizes a person detector to generate

etection hypotheses for a video sequence. Then the tracking prob-

em is basically simplified to an association task between detec-

ion hypotheses across video frames. In our framework, we formu-

ate this problem as a minimum cost lifted multicut problem. Here

ach node of the graph represents one single detection and edges

ink detections over video frames. A feasible solution for such a

ulticut problem clusters detections jointly over time and space.

herefore, the number of the tracks does not need to be speci-

ed or constrained. Here, the high edges costs encourage the un-

erlined nodes to be labeled as the same target. That means, this

dge should not be cut for decomposing the graph. The optimiza-

ion process partitions the graph into distinct components, each

epresenting one person’s track. 

.3.1. Definition of lifted multicut problem 

Minimum Cost Lifted Multicut [18] is an optimization frame-

ork for multi-labeling problems and partitioning graphs. There

s a one-to-one relationship between the decompositions of the

raph and labeling of the nodes in its feasible solutions. For any

ndirected graph G = (V, E) , any set of lifted edges E ′ ⊆
(

V 
2 

)
E and

dge cost function c : E ∪ E ′ → R , we can define a sample of the

inimum Cost Lifted Multicut Problem which is formulated as: 

Y = argmin 

y ∈ Y E E ′ 

∑ 

e ∈ E ∪ E ′ 
c e y e (8)

here set Y E E ′ ⊆ { 0 , 1 } E ∪ E ′ , whose elements y ∈ Y E E ′ are 01-

abelings of all edges E ∪ E ′ , are feasible solutions. Additionally, this

ptimization must hold the following three conditions: 

 v w ∈ E ∪ E ′ P ∈ v w − paths (G ) : y v w 

≤
∑ 

e ∈ P 
y e (9)

 v w ∈ E ∪ E ′ C ∈ v w − cuts (G ) : 1 − y v w 

≤
∑ 

e ∈ C 
(1 − y e ) (10)

ere, the inequality ( 10 ) and ( 9 ) guarantee that the lifted edge,

onnecting nodes v and w , is labeled 0, if and only if there exists

graysoul
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Fig. 4. Long-term occlusion. An example in video sequence MOT16-08 from frame 45 to frame 114, not handled by the lifted graph optimization. ID 4 and ID 44 belong to 

the same person but are occluded by ID 1. Similarly, ID 27 and ID 76 belong to the same person but are occluded by ID 44. 
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Fig. 5. Motion prediction of two tracklets; estimation of the bounding box’s posi- 

tion of tracklet 1 at time t + �t and the bounding box of tracklet 2 at time t . 
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 path in G between these two nodes along which all edges are

abeled 0. 

 C ∈ cycles (G ) ∀ e ∈ C : y e ≤
∑ 

e ′ ∈ C\{ e } 
y e ′ (11)

hese cycle constraints ( 11 ) are transitivity constraints which guar-

ntee that a feasible solution y well-defines a clustering of the

raph nodes into tracks. More details could be found in [18] . 

.3.2. Optimization algorithms for lifted multicut problem 

To accelerate the graph optimization and node labeling pro-

ess, we first use an adaptation of greedy agglomeration to initial-

ze the label of all the nodes. The algorithm is also called Greedy

dditive Edge Contraction (GAEC) and was introduced in [18] .

ernighan–Lin algorithm with joins (KLj) [18] is an extension of

he Kernighan–Lin algorithm [55] . It starts from an initial decom-

osition provided as input. We use the output of GAEC as the ini-

ial decomposition. Each iteration tries to refine the current de-

omposition (i.e. a decomposition with lower objective value) by

ne of the following transformations: (1) moving nodes between

wo neighboring components, (2) moving nodes from one com-

onent to an additional, newly introduced component, (3) joining

wo neighboring components [18] . 

After the optimization, we generate tracks from detection clus-

ers. The multicut optimization clusters the detections jointly over

pace and time for each person. First in each frame, we obtain the

ocation and scale of each target by calculating the location and

cale average of all detections that belong to that target. Then, we

onnect these averages across all frames to obtain a smooth trajec-

ory for each target. 

.4. Motion prediction 

When the lifted edges fail to handle some occlusions, either due

o the limitation of the CNN or the high crowdedness of the video

equences, we would need the motion information of the targets in

rder to tackle the long term occlusion problem. In Fig. 4 , a long

erm occlusion case which is not handled by the multicut graph is
hown. We use the motion information of primal tracklets gained

rom multicut optimization to stitch the tracklets that belong to

he same person. As it will be shown in the next section, it re-

uces the number of false negatives and ID-switches and thus im-

roves the overall tracking performance. The idea of reducing ID-

witch happening during occlusion, using motion information, is

llustrated in Fig. 5 . At each time, we select two tracklets such that

he first tracklet finishes sooner than the beginning of the second

racklet. Here, we denote the frame gap between these two track-

ets as �t , and the detection box of T i at time step t is denoted

s T i { t }. Then by adopting our motion prediction algorithm, we cal-

ulate the predicted bounding boxes of the first tracklet at time

tep t + �t, denoted as P 1 { t + �t} , and the predicted bounding

oxes of the second tracklet at time step t , denoted as P 2 { t }. The

wo tracklets will be recognized as the same target and stitched to-

ether in the final solution if they satisfy the following condition:

v erlap 1 + ov erlap 2 ≥ st it ch _ thr (12)

here: 

v erlap 1 = 

T 1 { t} ∩ P 2 { t} 
T 1 { t} ∪ P 2 { t} (13) 

v erlap 2 = 

T 1 { t + �t} ∩ P 2 { t + �t} 
T 1 { t + �t} ∪ P 2 { t + �t} (14) 
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Fig. 6. Occlusion handling on PETS09-S2L1 sequence; (first row) raw detections, (second row) output of lifted multicut optimization, (third row) tracking result using motion 

prediction. 
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Here, if the intersection over union area of the predicted and

tracked detection bounding boxes for both tracklets is over a

threshold, then we merge the two tracklets together as a new

tracklet. If there are multiple tracklets that can be stitched to T i ,

then we choose the one with the largest overlap 1 and overlap 2 . In

order to predict the position and scale of detection in the next

frame, we consider a nonlinear motion prediction. In Fig. 6 , we

show the tracking results on PETS09-S2L1 sequence with and with-

out the occlusion handling using motion prediction. The raw detec-

tions are shown in the first row of the figure. The outputs of the

LM optimization are presented in the second row, noticing the per-

son in blue is temporarily hidden by the person in black in frame

131 and 132, and the lifted edges fail to overcome this occlusion

during the optimization. In the third row, the final results after oc-

clusion handling are shown. It can be seen that the person in blue

is tracked correctly before and after the occlusion. 

Regarding motion prediction, there are some challenges we

need to overcome: (1) noisy detections which can lead to nonlin-

ear predictions of the target motion even when the actual motion

is linear; (2) When the video is taken from an eye-level camera po-

sition, the width of the bounding box changes to adapt the walking

pose of the person. Handling this issue is not straightforward, since

the pattern with which the width changes, is different for differ-

ent sizes of the bounding boxes, walking speed and even walking

habits of the pedestrians. We illustrate one example of this obser-

vation in Fig. 7 . This is why we designed an RNN to learn how to

generate the future walking pattern given the past walking pattern

of the targets. 

3.4.1. Recurrent neural network for nonlinear motion prediction 

In order to check whether two tracks belong to the same tar-

get, we need accurate predictions of the future or past positions
nd scales of the detection bounding boxes. Hereby, we design an

NN that is capable of predicting the position { X, Y } and scale fac-

or { W, H } in the next time steps, based on the bounding box pa-

ameters at current and the bounding box sequence in all the past

ime steps. 

Fig. 8 illustrates the unrolled structure of our RNN for

otion prediction. As input of the RNN at each time step,

e use the vector { �X i , �Y i , �W i , �H i } = { X i − X i −1 , Y i − Y i −1 , W i −
 i −1 , H i − H i −1 } which represents the difference between adjacent

etection bounding boxes. There is a fully connected layer with-

ut activation function (as a linear layer) between the input layer

nd RNN cell. The linear layer output is a vector of size M . Using

his linear layer, we expand the size of the input feature vector to

ake the training process more effective. The expanded input vec-

or then goes through an RNN cell with internal size of N . Two out-

uts of the RNN cell are illustrated by two outgoing arrows from

ach RNN cell in Fig. 8 (both are vectors of size N ). One is the out-

ut vector of the cell and the other is the hidden state of the RNN.

s for the output vector of the RNN, we use another linear layer to

ring the vector size down to 4. This vector shows the bounding

ox changes at the next time step. At training time, we shift all

he training input sequences one time step forward and use them

s our training labels. The labels are then compared with the final

utput of the network using L2-Loss function. The loss is then min-

mized to update the weights and biases of the network through

he back-propagation algorithm. 

The main reason for using the changes of the bounding boxes

arameters instead of the bounding box parameters directly, is

hat the raw bounding box parameters are non-stationary. To

llustrate this, we plot the width of the bounding boxes of the

erson shown in Fig. 7 on the left side of Fig. 9 . We can see

here is a decreasing trend in the data. This means there is a
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Fig. 7. The width of the detection bounding box changes periodically according to the changes of the walking pose (video sequence MOT16-10). 

Fig. 8. The structure of the RNN for nonlinear motion prediction. At input stage, we input all the available bounding boxes into the network. At the prediction stage, we use 

the output of previous time step as the input of the current time step while maintaining the hidden state from the beginning. 

Fig. 9. Non-stationary data vs. stationary data; (Left) width W i of the detection boxes in Fig. 7 from frame 42–105. (Right) width differences of the neighboring detection 

boxes �W i = W i − W i −1 . 

graysoul
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Fig. 10. Motion prediction using RNN in video sequence MOT16-01 from frame 395 to frame 431; (first row) actual track, (second row) bounding boxes with dashed line are 

the predicted detection bounding boxes by the RNN. 
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structure in the data that is dependent on time and thus the data

is non-stationary. We found that non-stationary data is hard to

model for recurrent neural networks and it makes the convergence

speed of the training process extremely slow. Therefore, in order

to make our input data stationary and remove the increasing or

decreasing trends, we consider the difference in input data by

subtracting each bounding box parameter at time step (t − 1) from

the corresponding one at current time step t . The data plot of the

differences is shown on the right side of Fig. 9 . Our experiments

show that after removing the time dependent structure from the

data, the RNN has much better convergence properties, as well as

much more accurate and robust prediction outputs. 

At inference time, the RNN is to predict future bounding boxes

in the next few steps after the end of each track(let). We split

the process into two stages. At the first stage, which is the in-

put stage, we just input all the existing bounding boxes, time step

by time step, into the network. All the outputs of the first stage

are ignored. The second stage, which is the prediction stage, be-

gins from the last detection box of the track(let). At this stage, the

output of the previous time step is used as the input of the current

time step. Since the hidden state contains all the information about

the past sequence, we keep transferring the hidden state from the

beginning. The prediction stage stops after a predefined step, be-

cause as the prediction step increases, the predictions become less

reliable. 

We found that the position can be seen as a scale factor for pre-

dicting the width and the height. For instance, if the RNN detects

some significant changes of position, this indicates the changes of

the width and the height should be increased in the next time

step. Therefore, adding position parameters to the RNN structure

can improve the overall prediction performance. In Fig. 10 , we il-

lustrate one prediction output of the RNN from the MOT16-01 test

data. On the first row, we show the actual tracklet of the target. On

the second row, the bounding boxes with dashed lines are the pre-

dicted ones by the RNN. There are two numbers in the bounding

boxes. The first number is the global tracking ID which should not

change during the life span of the target in all video frames, and

the second number is the global detection ID. Since the predicted

bounding boxes do not exist in the original input detections set, we
ssign −10 0 0 to the predicted bounding boxes number. From the

esult, it can be seen that the predictions are fairly accurate. Note

hat the bounding boxes in the middle on both rows are narrower

han the bounding boxes on two sides. 

.5. Tracklet stitching 

We use the motion prediction model to stitch the tracklets be-

onging to the same target. The first step in this process is to use

he motion predictor (the RNN) to expand the length of the track-

ets which are generated by the lifted multicut (LM) optimization.

ore specifically, we use the RNN to predict the future and past

ounding boxes of each tracklet for some time steps. After the

racklet extrapolation step, we check every possible tracklet pair

or stitching. For each tracklet pair, a stitching score is calculated,

here S ij denotes the score for stitching T i and T j together. This

alue indicates how likely these two tracklets are to belong to the

ame person. To calculate this value, the formulas (13) and (14) are

pplied. However, this value is not the final score. These two track-

ets must satisfy two conditions, otherwise we set the score to

ero. These conditions are: (1) The last time step of the first track-

et must be earlier than the first time step of the second tracklet;

2) In order to make sure the stitching score is valid, it must be

bove a certain threshold called the stitching threshold, which is a

unction of the frame gap between the two tracklets. 

After calculating the stitching scores, we then go through an

terative process, in which we find the tracklet pair S ij with the

ighest stitching score. Then these tracklets are merged to form a

ingle tracklet. In order to fill up the frame gap between the track-

ets, we interpolate the missing detections by using the predicted

ounding boxes from the RNN. For the new tracklet ID, the ID of

he first tracklet T i is used. We then take all the past predictions of

he first tracklet and all the future predictions of the second track-

et as the past and future bounding box predictions, respectively,

or the new tracklet. We keep iterating this stage until no valid

racklet pair remained for stitching. We use the results of this pro-

ess as our final tracking results. 
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Table 1 

Stitching score threshold as function of the frame gap in motion stitching process. 

Frame gap 0–10 11–25 26–45 

Stitching score threshold (static camera) 1.15 0.95 0.75 

Stitching score threshold (moving camera) 1.0 0.85 0.75 
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1 https://motchallenge.net/results/MOT16/ . 
. Results and discussion 

.1. Datasets 

We use the Multiple Objects Tracking (MOT) Challenge Bench-

ark 2016 [60] to test the overall performance of our algorithm.

his benchmark contains 7 challenging video sequences includ-

ng 5316 frames in unconstrained environments, filmed with both

tatic and moving cameras. For all MOTChallenge test sequences,

he POI detector [3] , which uses a modified Fast Region-based

NN (Fast R-CNN) [61] , is utilized to produce person detections.

or comprehensive evaluation, we also used the MOT15 [62] and

OT17 benchmarks. MOT17 contains the same video data as

OT16, but it provides detections from different detectors. MOT15

enchmark includes video data at more divers frame rates. 

.2. Evaluation metrics 

We report the performance of our tracking method in terms

f CLEAR MOT metrics [63] including Multiple Object Tracking Ac-

uracy (MOTA), Multiple Object Tracking Precision (MOTP), Mostly

racked (MT, > 80% overlap), Mostly Lost (ML, < 20% overlap) and

artly Tracked trajectories (PT). MOTA incorporates three error

ypes; the number of False Positives (FP), the number of False Neg-

tives (FN), and the number of ID-switches (IDs). The FAF metric is

he average number of false alarms per frame, and the FM metric

hows the total number of times a trajectory is fragmented during

racking. 

.3. Implementation details 

For training the CNN, we adopted the Adam optimizer to min-

mize a binary cross entropy loss function. In each epoch, we first

andomly shuffled the order of the image pairs and collected 100

airs of images as one mini-batch. Layer weights were initialized

ith zero mean normal distribution using the number of fan-ins

s variants. The learning rate was initialized as 10 −4 and decreased

very 4 epochs by a factor of 10. To avoid over-fitting, we vali-

ated the network every 1/3 epoch. The network was trained on

VIDIA GTX Titan X. The training speed was 30 0–40 0 examples/s,

nd testing speed (only forward path) was 1100 examples/s. The

raining process converged after 10 epochs. For the evaluation of

he predictions, two detections are assumed to be from the same

arget, if the similarity probability is larger than 0.5. Based on this

alculation, the peak test accuracy stays at 95.8%. 

The ground truth data of the MOT16 training set was used to

enerate training image pairs for the CNN. More specifically, three

ypes of pairs are generated: (1) Detection pairs from the same

erson by checking the ground truth ID of detections in every next

hree frames. These pairs are labeled with 1 as positive pairs; (2)

etection pairs from different persons, same as the first case, by

ooking at the ground truth ID of the detections. This type of de-

ection pairs are labeled with 0 as negative pairs; (3) Detection

airs from one true target and one false positive detection (la-

eled with 0 as negative pairs). The false positive detections are

ither randomly selected from the image area with given aspect

atio 14:6 from the last 10 frames that do not overlap with any

round truth detections, or some non-person objects such as cars

nd obstacles (note that in the MOT16 ground truth data, there are

ome available annotated non-person targets). For validation, we

sed the MOT 2015 training set (we excluded all the overlapping

ideo sequences with MOT 2016 training set). In the end, there are

38,091 positive detection pairs and 1,304,471 negative detection

airs for training. For validation, there are 69,339 positive detec-

ion pairs and 76,237 negative pairs in total. 
The association graph is constructed by connecting detections

ver a certain frame gap. This is essential in order to track peo-

le in case of short occlusion. However, the pairwise similarity ap-

earance feature becomes less reliable if the frame gap increases.

hus, we consider a maximum frame gap depending on the frame

ate of the input video sequence when we construct the graph. In

ll experiments, we connect the detection nodes that are at most

0 frames apart for a video of frame rate less then 30 FPS. More

recisely, the following relation is used to calculate the maximum

rame gap g : 

 = 10 × f r 

30 

. (15) 

The stitching score threshold and corresponding range of the

rame gap used in the stitching process are presented in Table 1 .

e decreased the threshold as the frame gap increases because,

s the frame gap becomes larger, the motion prediction becomes

ess reliable. We used two sets of thresholds, one for static cam-

ras and one for moving cameras. In moving camera scenarios, the

otion of the track is hard to predict, so the stitching conditions

ust be relaxed. The thresholds listed in Table 1 are fine-tuned on

he training data of the MOT2016 benchmark. If the stitching score

s below the threshold, the score is set to zero. 

.4. Benchmark evaluation 

We submitted our tracking results named LM_NN_16 to

OTChallenge 2016, 1 where our results achieved third place in

erms of MOTA, compared to the best performed algorithms in

OT16. In Table 2 , we compare our tracking method with other al-

orithms tested on MOT16 benchmark. The arrows beside the eval-

ation metrics in the tables indicate weather higher( ↑ ) or lower( ↓ )

alues are more desirable. In the LM_NN_16 version, we adopted

oth the CNN and the RNN to get our best result. While in the

M_CNN, the RNN is not used which results in lower MOTA and

igher ID-switches. From this table, it is clear that our occlusion

andling can successfully reduce ID-switches by about 29%, com-

ared to the LM_CNN. It is also effective in improving MOTA and

OTP by 1.8% and 0.8%, respectively. Moreover, the number of

rack fragments decreases 30% by joining tracklets of the same

rack. Evidently, this indicates that the proposed occlusion han-

ling (tracklet stitching) algorithm is beneficial in improving the

esults by a large margin. Fig. 11 shows qualitative results of our

racking algorithm on the MOT16 benchmark. 

We also evaluated our method on MOT17 benchmark (see

able 5 ). In this challenge, the detections of three different detec-

ors namely DPM [69] , FRCNN [70] and SDP [71] are provided. By

omparing to other published methods, our method is the best in

erms of MOTP, FAF, FP, and Frag. The number of false positives

nd fragmentation is nearly 50% lower, compared to the top ranked

ethod (FWT). Regarding the number of ID-switches, our method

akes the second place. 

https://motchallenge.net/results/MOT16/
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Fig. 11. Visual tracking results of MOT16 testing dataset using POI detections, bounding boxes illustrated using dashed line are interpolated during motion stitching process, 

first number in bounding box is the global tracking ID, second number is the global detection-ID. 



M. Babaee, Z. Li and G. Rigoll / Neurocomputing 368 (2019) 69–83 79 

Table 2 

Tracking results on the MOT16 benchmark. The complete table of results can be found on the MOTChallenge website. Methods marked with ∗ use detections provided by Yu 

et al. [3] . 

Tracker MOTA (%) ↑ MOTP (%) ↑ FAF ↓ MT (%) ↑ ML (%) ↓ FP ↓ FN ↓ IDs ↓ FM ↓ Hz ↑ 
HT_SJTUZTE [56] 71.3 ± 11 . 4 79.3 1.6 46.5 19.5 9238 42,521 617 743 29.0 

LMP_p [49] ∗ 71.0 ± 12.9 80.2 1.3 46.9 21.9 7880 44,564 434 587 0.5 

KDNT [3] ∗ 68.2 ± 12.9 79.4 1.9 41.0 19.0 11,479 45,605 933 1093 0.7 

MCMOT_HDM [57] 62.4 ± 10.6 78.3 1.7 31.5 24.2 9855 57,257 1394 1318 34.9 

NOMTwSDP16 [58] 62.2 ± 11.0 79.6 0.9 32.5 31.1 5119 63,352 406 642 3.1 

DeepSORT-2 [46] ∗ 61.4 ± 10.6 79.1 2.2 32.8 18.2 12,852 56,668 781 2008 17.4 

SORTwHPD16 [59] 59.8 ± 10.3 79.6 1.5 25.4 22.7 8698 63,245 1423 1835 59.5 

EAMTT [25] 52.5 ± 11.4 78.8 0.7 19.0 34.9 4407 81,223 910 1321 12.2 

LM_CNN ∗ 67.4 ± 12.8 79.1 1.7 38.2 19.2 10,109 48,435 931 1034 1.7 

LM_NN_16 ∗ 69.0 ± 12.8 79.9 1.0 37.2 22.0 6213 49,675 668 730 1.5 

Fig. 12. The accuracy of the proposed tracking method for each sequence of MOT16 using different person detectors namely POI, SDP, FRCNN and DPM. 
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.5. Ablation study 

.5.1. Analysis of detection pairwise similarity 

The pairwise affinity measure in our algorithms consists of four

lements; CNN score, height, position, and detection confidence

core (det_score). Table 6 shows the contribution of each element.

ince the MOT16 training data was used for training the CNN, we

onducted this experiment on the unseen MOT15 training set. It

an be seen that the CNN score is the biggest contributor to the

ccuracy, compared to the other elements. However, the other ele-

ents are also effective in enhancing the tracking performance. 

Our CNN model, unlike a Siamese network which is a common

etwork for human re-identification, gets the concatenated image

airs as the input. We compared our CNN with other models ap-

lied by Tang et al. [49] , namely ID-Net, SiameseNet, StackNet, and

tackNetPose. ID-Net is based on the VGG-16 Net [72] . After ex-

racting the identity features from the last fully connected layer,

hey use Euclidean distance to decide whether the two detections

elong to the same person. SiameseNet, which has a Siamese ar-

hitectures, has twin CNNs followed by two fully connected layers.

tackNet has the structure of normal CNN, but the image detec-

ions are stacked together along RGB channel to form the input

ensor. StackNetPose is has a similar structure to StackNet, but it

uses the body part correspondences between the two images with

GB images as input. For a fair comparison, we retrained the model

ith the same training data they used. Table 7 shows the perfor-

ance of each network. The accuracy results of the models are

opied directly from the published paper. We used the same train

nd test dataset to evaluate these structures. In this experiment,

ur network outperforms the Siamese network achieving 96.1%
ccuracy in comparison to 84% accuracy for Siamese. This shows

hat joint processing of the image pairs from the first layer of the

etwork leads to a better performance, consistent with the find-

ngs in [73] . 

We also evaluated the performance of our proposed method

iven detections from different detectors. Fig. 12 demonstrates the

ccuracy (MOTA) of the proposed tracking algorithm on detec-

ion inputs from different detectors, namely POI [3] , FRCNN, SDP,

nd DPM. Since our proposed algorithm falls into the tracking-

y-detection group, the final tracking results will obviously be

mproved by having a more accurate detection hypothesis as an

nput. 

.5.2. Analysis of RNN 

We tested both the Gated Recurrent Unit (GRU) and the Long

hort-Term Memory (LSTM) as the cell structure in the RNN shown

n Fig. 8 . The internal size of the cell is N = 1024 and the output

ector size of the linear layer is M = 100 . From Fig. 13 , it can be

een that in our specific application both GRU and LSTM have an

lmost identical performance. After 15 training epochs, the differ-

nce of the test loss between LSTM and GRU is very low, but using

RU leads to a better convergence speed at the early stage of the

raining. Since the prediction performance of LSTM and GRU was

dentical in our bounding box prediction task, we chose GRU as

he cell structure. 

In order to evaluate quantitatively the performance of the mo-

ion prediction (with purpose of occlusion handling), we report

he results of our tracking approach with and without using the

NN on the MOT2016 dataset. In Table 4 , we show two impor-

ant evaluation metrics which essentially determine the tracking
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Fig. 13. Test loss of the RNN with GRU and LSTM cells. 

Table 3 

Detailed results on the MOT16 test sequences. 

Sequence MOTA (%) ↑ MOTP (%) ↑ FAF ↓ MT (%) ↑ ML (%) ↓ FP ↓ FN ↓ IDS ↓ FM ↓ 
MOT16- 

01 

LM_CNN 51.9 78.8 2.1 47.8 4.3 964 2074 38 40 

LM_NN 58.4 79.3 0.9 43.5 13.0 391 2244 24 27 

MOT16- 

03 

LM_CNN 79.7 78.9 3.1 69.6 5.4 4638 16,176 367 415 

LM_NN 81.6 79.9 1.5 65.5 6.1 2191 16,780 227 245 

MOT16- 

06 

LM_CNN 63.9 81.5 0.5 42.1 23.5 545 3526 95 116 

LM_NN 63.8 81.1 0.4 42.5 24.0 534 3543 96 128 

MOT16- 

07 

LM_CNN 59.5 80.1 1.5 40.7 5.6 748 5750 112 118 

LM_NN 59.5 80.4 1.2 37.0 5.6 599 5904 101 105 

MOT16- 

08 

LM_CNN 37.1 80.6 1.6 19.0 25.4 1025 9381 127 140 

LM_NN 38.5 81.4 1.4 23.8 33.3 856 9363 66 71 

MOT16- 

12 

LM_CNN 47.3 80.3 0.6 22.1 36.0 583 3743 44 43 

LM_NN 47.6 80.7 0.5 20.9 43.0 449 3867 32 31 

MOT16- 

14 

LM_CNN 48.4 76.8 2.1 18.3 21.3 1606 7785 148 162 

LM_NN 49.7 77.2 1.6 17.1 25.0 1193 7974 122 123 

Table 4 

Tracking results of the proposed method with and without occlusion handling (OH) step, comparison of the sum of false positives and false negatives and the number of 

ID-switches on MOT2016 train set. 

MOT16-02 MOT16-04 MOT16-05 MOT16-09 MOT16-10 MOT16-11 MOT16-13 

FP + FN 11,772 14,265 3096 1669 4777 2701 4403 

FP + FN with OH 11,543 14,244 3080 1392 4700 2581 4189 

IDS 139 173 71 46 160 52 243 

IDS with OH 81 85 45 24 100 24 152 

Table 5 

Tracking results on the MOT17 benchmark. The complete table of results can be found on the MOTChallenge website. 

Tracker MOTA (%) ↑ MOTP (%) ↑ FAF ↓ MT (%) ↑ ML (%) ↓ FP ↓ FN ↓ IDs ↓ FM ↓ Hz ↑ 
FWT [64] 51.3 ± 13 . 1 77.0 1.4 21.4 35.2 24,101 247,921 2648 4279 0.2 

jCC [65] 51.2 ± 14.5 75.9 1.5 20.9 37.0 25,937 247,822 1802 2984 1.8 

MHTDAM [11] 50.7 ± 13.7 77.5 1.3 20.8 36.9 22,875 252,889 2314 2865 0.9 

EDMT17 [26] 50.0 ± 13.9 77.3 1.8 21.6 36.3 32,279 247,297 2264 3260 0.6 

PHD_GSDL17 [66] 48.0 ± 13.6 77.2 1.3 17.1 35.6 23,199 265,954 3998 8886 6.7 

SAS_MOT17 [67] 44.2 ± 12.2 76.4 1.7 16.1 44.3 29,473 283,611 1529 2644 4.8 

EAMTT [25] 42.6 ± 13.3 76.0 1.7 12.7 42.7 30,711 288,474 4488 5720 12.0 

GMPHD_KCF [68] 39.6 ± 13.6 74.5 2.9 8.8 43.3 50,903 284,228 5811 7414 3.3 

LM_NN_17 45.1 ± 13.3 78.9 0.6 14.8 46.2 10,834 296,451 2286 2463 0.9 
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performance. One is the sum of false positives and false negatives,

and the other is the number of ID-switches. 

Table 3 presents the detailed tracking results for both LM_NN

and LM_CNN on each video sequence of MOT16 test set. Over-

all, it can be seen that utilizing motion cues improves the over-

all tracking performance by increasing MOTA. ID-switches reduce

for almost all the sequences, with the maximum reduction of

48% for the MOT16-08. The sequences MOT16-08, MOT16-01 and
OT16-03 all have a maximum ID-switch drifting. Similarly, track

ragmentation drops for these three sequences significantly. These

hree videos have been recorded by a static camera. Although there

s improvement in moving camera scenarios, it is not as remark-

ble as in the static camera scenarios. In order to evaluate the per-

ormance of the RNN for motion prediction, we feed 30 frame long

racklets to the RNN and predict the detection boxes for the next

0 frames. Since we need the ground truth for comparison and
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Table 6 

The contribution of each element of the pairwise affinity measure in tracking results of MOT15 train dataset. 

Affinity MOTA (%) ↑ MOTP (%) ↑ FAF ↓ MT (%) ↑ ML (%) ↓ FP ↓ FN ↓ IDs ↓ FM ↓ 
Height + position + det_score 36.8 72.6 0.65 11.4 48.1 1889 7143 265 364 

CNN 51.2 73.5 0.78 28.7 34.6 2248 4820 113 233 

CNN + det_score 51.1 73.2 0.79 28.8 34.5 2275 4798 112 235 

CNN + height 51.7 73.5 0.77 29.1 35.6 2225 4764 109 224 

CNN + position 53.9 73.3 0.75 31.2 34.9 2162 4536 90 202 

CNN + height + position 53.3 73.5 0.77 31.1 35.2 2226 4539 99 204 

CNN + height + position + det_score 54.0 73.6 0.74 31.1 35.2 2132 4543 89 200 

Fig. 14. The evaluation of the motion prediction by the RNN on (a) MOT16 and (b) MOT15 datasets. 

Table 7 

Comparison of the person re-identification models. 

Model ID-Net SiameseNet StackNet StackNetPose Ours 

Acc. (%) 80.4 84.7 86.9 90.0 96.1 
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i  
lready used the MOT16 train data for training the RNN, the pre-

iction performance is reported on unseen training data of the

OT15 benchmark as well. These two benchmarks have some

ideos in common, so we excluded them from the MOT15 data.

ote that the set of generated tracklets from the MOT16 in this

xperiment are different from those have been used for training

he RNN. Fig. 14 shows the intersection over union (IOU) average

f the predicted detection boxes with the ground truth one at each

ime step. Evidently, as the time step increases, the predictions are

ess accurate due to error accumulation. It can also been seen that

he predictions are more accurate for static cameras. For instance,

he IOU for TUD-Stadtmitte sequence remains above 80% in all the

ext time steps, while the curve decreases remarkably for moving

ameras like ETH-Bahnhof. 

In Table 8 , the results of 7 tracking algorithms with (highlighted

ows) and without our occlusion handling is presented. Without

ny prior knowledge about these methodologies, the final tracklets

f the methods released by the MOT16-Challenge were used as the

nput to our occlusion handling algorithm. As it can been seen, our

pproach reduces fragments and ID-switches, while keeping the

OTA metric relatively stable. By considering the ID-switch metric,

t is clear that the proposed algorithm can decrease the ID-switch

hile other evaluation metrics are roughly the same. The amount

f ID-switch reduction varies from one algorithm to another. The
argest reduction is 988(40.86%) in the TBD algorithm [20] , while

he smallest reduction is 15(2.35%) in the EDMT algorithm [26] .

imilarly, the number of false negatives mostly decreases by re-

overing the missed detection boxes in occlusion. Having the pre-

rained RNN, the motion prediction and tracklet stitching run at

pproximately 100 Hz on a CPU. This proposed post processing

tep is computationally efficient in reducing ID-switches of base-

ine tracking algorithm. 

.6. Discussion 

Following the tracking-by-detection paradigm, we aim to ob-

ain short and high confidence tracklets through a clustering graph

ptimization. The experiment shows that our CNN relatively per-

orms well for assigning pair-wise detection affinity to the edges

f this graph. We also verified the design structure for the CNN by

esting on the MOT dataset and compared to other possible struc-

ures. However, the performance deceases gradually, as the frame

ap of the two detection images increases due to illumination or

ose body changes over a long occlusion. Additionally, in order to

void having large graph for the optimization, we connect detec-

ions which are temporally close. Although, these are the reason

o first create short tracklets, but still the FM and IDs values are

igh due to lengthy occlusion. Here, we propose to use the motion

ues of tracklets before and after an occlusion in order to associate

ccurately those tracklets which very likely belong to the same tar-

et. However, conventional methods like Kalman-filter do not de-

iver acceptable results due to long occlusions, missing detections,

naccurate detection bounding boxes and the natural property of
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Table 8 

The effect of our occlusion handling (OH) method on the tracking results of state-of-the-art algorithms. 

Tracking method MOTA (%) ↑ MOTP (%) ↑ MT (%) ↑ ML (%) ↓ FP ↓ FN ↓ IDS ↓ FM ↓ 
TBD [20] 33.7 76.5 7.2 54.2 5804 112,587 2418 2252 

TBD [20] + OH 34.1 76.9 7.0 56.1 4201 112,417 1430 1370 

EDMT [26] 45.3 75.9 17.0 39.9 11,122 87,890 639 946 

EDMT [26] + OH 45.7 75.9 17.0 39.9 11,128 87,865 624 942 

CEM [5] 33.2 75.8 7.8 54.4 6837 114,322 642 731 

CEM [5] + OH 33.6 75.8 7.6 54.5 6802 114,296 596 718 

MHTDAM [11] 45.8 76.3 16.2 43.2 6412 91,758 590 781 

MHTDAM [11] + OH 46.9 76.4 16.1 43.2 6257 91,669 549 757 

QuadMOT16 [50] 44.1 76.4 14.6 44.9 6388 94,775 745 1096 

QuadMOT16 [50] + OH 43.8 76.6 14.6 44.9 6994 94,758 669 1049 

EAMTT_pub [25] 38.8 75.1 7.9 94.1 8114 102,452 965 1657 

EAMTT_pub [25] + OH 39.5 75.2 7.9 94.1 8006 102,428 913 1606 

IOU [24] 57.1 77.1 23.6 32.9 5702 70,278 2167 3028 

IOU [24] + OH 58.1 77.2 23.1 33.3 4883 70,207 1624 2539 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

human walking which causes nonlinear changes especially for the

variable ‘width’ of the detection box. 

The experiment on the MOTchallenge dataset indicates that the

proposed RNN is able to estimate detection box parameters with

IOU larger than 50% till 20 frames in static camera scenarios, which

is effective in handling long occlusions. Although the accuracy de-

creases for further predictions due to error accumulation, espe-

cially for the moving camera videos, the results show that the RNN

can still reduce the number of ID-switches and hence improve the

overall tracking performance. Meanwhile, the missing detections

during occlusion are reconstructed using the RNN predictions. This

leads to reduction in the number of false negatives, as it is evident

from Table 3 . 

Last but not least, the proposed tracklet stitching process can be

applied as a stand alone algorithm on results (as initial tracklets)

of any baseline tracking method, not relying on prior knowledge of

the underlying baseline method. 

5. Conclusion 

We proposed a method for the multiple people tracking prob-

lem. A CNN was trained to predict the likelihood of two detec-

tions belonging to the same target. Besides that, different criteria

including height, location and confidence score of detections have

been considered as cost edges in the graphical data association

model. The primary tracklets are obtained by solving the minimum

cost lifted multicut problem for the graphical model. To reduce the

number of ID-switches in long occlusion, the tracklets are stitched

together using motion information predicted by an RNN. As future

work, one could extend this work by adding other constraints such

as body shape or head pose to the graphical model. 
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