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In the field of radar data processing, traditional maneuvering target-tracking algorithms assume that target move- 

ments can be modeled by pre-defined multiple mathematical models. However, the changeable and uncertain 

maneuvering movements cannot be timely and precisely modeled because it is difficult to obtain sufficient in- 

formation to pre-define multiple models before tracking. To solve this problem, we propose a deep learning 

maneuvering target-tracking (DeepMTT) algorithm based on a DeepMTT network, which can quickly track ma- 

neuvering targets once it has been well trained by abundant off-line trajectory data from existent maneuvering 

targets. To this end, we first build a LArge-Scale Trajectory (LAST) database to offer abundant off-line trajectory 

data for network training. Second, the DeepMTT algorithm is developed to track the maneuvering targets using 

a DeepMTT network, which consists of three bidirectional long short-term memory layers, a filtering layer, a 

maxout layer and a linear output layer. The simulation results verify that our DeepMTT algorithm outperforms 

other state-of-the-art maneuvering target-tracking algorithms. 
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. Introduction 

Target tracking is a critical issue in the fields of airspace surveillance
nd air traffic control. A reliable and stable target-tracking algorithm
an provide accurate estimations of the target states, thus guarantee-
ng better and safer airspace managements. In the past several decades,
any filtering algorithms such as Kalman filter (KF) [1] , extended KF

EKF) [2] , unscented KF (UKF) [3] and particle filter (PF) [4] have
een proposed to improve the tracking accuracy based on Bayesian
racking theory. In Bayesian tracking theory, pre-defined mathemat-
cal tracking models are required to simulate the movements of the
arget. Hence, the target-tracking performance heavily relies on these
re-defined mathematical models [5,6] . However, in practice, it is in-
ractable to obtain precise mathematical models in advance to track
aneuvering targets because the target movement is always uncertain

nd changing in maneuvering scenarios. This problem causes a serious
egradation in the maneuvering-target tracking algorithms with pre-
efined mathematical models. Hence, how to improve the performance
f maneuvering-target tracking remains an important and challenging
ssue [7,8] . 

To solve the maneuvering-target tracking problem, many multiple-
odel (MM) algorithms [9,10] have been proposed, where more than
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ne model is used with different filters to simultaneously track the
arget. Thus, the tracking results can be improved by combing all of
he tracking results of different models with proper weights. Specifi-
ally, on the one hand, Blom and Bar-Shalom [11] proposed the inter-
ctive MM (IMM) algorithm to derive the adaptive weights of models
ccording to the changeable observations. Many modified IMM algo-
ithms [12–14] were proposed for specific scenarios of maneuvering-
arget tracking, such as nonlinear, non-Gaussian and multi-target track-
ng scenarios. On the other hand, model-set design algorithms were
roposed to offer better model approximations in maneuvering-target
racking procedures, such as fixed structure MM (FSMM) [15,16] and
ariable structure MM (VSMM) [9,17] algorithms. Recently, advanced
M algorithms such as the MIE-BLUE-IMM [18] and hybrid grid MM

HGMM) [19] algorithms have been proposed, where more informa-
ion, i.e., input estimation [18] and adaptive fine sub-models [19] , is
ffered in the tracking processing. Thus, the maneuvering models can
e more precisely estimated, and the tracking performance is further
mproved. 

In practice, the movement models are unknown and changing in
aneuvering-target tracking scenarios. The traditional MM algorithms
ust accumulate sufficient observation data to form proper estimations

f the movement models, particularly when there are heavy observation
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Fig. 1. Model estimation and target-tracking 

results with HGMM algorithm [19] . The upper 

two subfigures show the estimations of acceler- 

ation model with HGMM algorithm. Green cir- 

cles indicate that those estimations are inaccu- 

rate and delayed in comparison with real accel- 

erations especially when they change. Once the 

model-estimation-delay happens, the tracking 

performance degrades, as shown in the bottom 

subfigure.(For interpretation of the references 

to colour in this figure legend, the reader is re- 

ferred to the web version of this article.) 
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oise and nonlinear approximation errors. Thus, in traditional MM al-
orithms, the proper model estimated by previous observations always
ags behind the current target state. This model-estimation-delay issue,
entioned and illustrated in [20,21] , causes an obvious degradation of

he tracking performance. Specifically, in a two-dimensional maneuver-
ng tracking scenario as shown in Fig. 1 , the state-of-the-art MM algo-
ithm, i.e., HGMM, is used to track the maneuvering target. However,
ig. 1 shows that during the entire tracking procedure, the estimation of
he acceleration model is delayed for 5 s. As a result, the traditional MM
lgorithms cannot always accurately track the maneuvering targets. 

To solve the model-estimation-delay problem, from the data-driven
erspective, we propose a new deep learning maneuvering target-
racking (DeepMTT) algorithm. In our DeepMTT algorithm, we design
 “smart ” model, which can learn to timely and precisely predict tra-
ectories of maneuvering targets with different observations. A simple
ethod to build this model is based on neural networks [22] . In fact,
eural networks have been applied to the field of target tracking since
he 1990s [22–24] . However, these networks are too shallow to approx-
mate the complex characteristics of maneuvering trajectories because
f the limited parameters in the networks. Thus, they are only comple-
entary methods to provide more information in the tracking process

25–27] and cannot solve the time-delay issue in maneuvering-target
racking. 

In contrast to the shallow neural networks of [25–27] , our DeepMTT
lgorithm learns the maneuvering models from observations based on
he bidirectional long short-term memory (LSTM) [28–30] structure,
hich is a deep learning structure. This DeepMTT network can directly
290 
stimate the trajectories of the maneuvering targets with no movement
odel approximation procedure in the classic MM algorithms. Thus, the
odel-estimation-delay problem can be eliminated to a great extent.
o this end, we first build a LArge-Scale Trajectory (LAST) database,
hich contains 10 million trajectories with the corresponding observa-

ions that cover normal maneuvering cases in civil airport surveillance.
sing the LAST database, we can design and train a deeper network with
 great amount of trainable parameters, which well fit different models
f maneuvering movements. Accordingly, our DeepMTT network is built
o directly learn the maneuvering trajectories with no movement mod-
ls. The DeepMTT network contains a filtering layer, three bidirectional
STM layers, a maxout layer and a linear output layer. Three bidirec-
ional LSTM layers are the main components of the DeepMTT network
o learn the temporal information in maneuvering trajectories, mean-
hile the filtering layer is designed to decrease the noise. The maxout

ayer is “good at ” fitting the nonlinear function [31] , which is used to
enerate the trajectory data. In addition, the linear output layer reforms
he outputs into the target states of trajectories. Finally, we can directly
nd timely track the maneuvering target with a well-trained DeepMTT
etwork. The simulation results show that our DeepMTT algorithm out-
erforms other state-of-the-art maneuvering tracking algorithms. The
eanings of notation in the paper are listed in Table 1 . The main con-

ributions of our work are summarized as follows: 

• An LAST database is built to offer sufficient training data for tracking
maneuvering targets. 

• A DeepMTT network is proposed to track a maneuvering target by

learning from the extensive trajectory data of the LAST database. 
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Table 1 

Notation list. 

Notation Meaning of the notation 

k Discrete time step for tracking, 𝑘 = 1 , 2 , 3 , … , 𝐾. 

x k Target state vector at time step k . 

F State transition matrix. 

n Transition noise. 

z k Observation vector at time step k . 

h ( · ) Nonlinear observation function. 

m Observation noise. 

d x,k , d y,k Distances along x and y directions at time step k . 

v x, k , v y, k Velocities along x and y directions at time step k . 

n d , n v Transition noises of distance and velocity. 

s 𝜏 Sampling interval. 

𝛼 Turn rate of maneuvering target. 

𝜃k , r k Azimuth and distance observed at time step k . 

m 𝜃 , m r Observation noises of azimuth and distance. 

t segment Length of trajectory segment. 

V max Maximum velocity of aircraft. 

D random Distance uniformly sampled from a given range. 

V random Velocity uniformly sampled from a given range. 

𝜃distance Direction of distance sampled from [−180 ◦ , 180 ◦] . 
𝜃velocity Direction of velocity sampled from [−180 ◦ , 180 ◦] . 
𝜎d , 𝜎v , 𝜎a , 𝜎𝜃 , 𝜎r Standard deviations of distance, velocity, acceleration, azimuth and distance, respectively. 

𝒙̂ 𝑘 State vector estimated by filtering algorithm at time step k . 

𝒙̂ 
𝑁 
𝑘 Normalized state vector at time step k . 

C max Maximum value in sequence 𝒙̂ 1∶ 𝐾 . 

r 1: K Residual sequence of the estimated trajectory. 

𝒙̃ 1∶ 𝐾 Modified estimated trajectory. 

A Matrix of sliding window for filtering. 

𝒙̂ 
𝐹 
𝑘 Output vector of filtering layer at time step k . 

𝜙n ( · ) Noisy activation function. 

𝜙p ( · ) Hard-tanh activation function. 

𝜎( · ) Scaling function. 

𝒉 
𝐿 
1∶ 𝐾 Output sequence of bidirectional LSTM layers. 

𝒉 
𝑀 
1∶ 𝐾 Output sequence of maxout layer. 
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. Large-Scale trajectory database of maneuvering target 

In this paper, the LAST database is established for maneuvering-
arget tracking. The samples in our database contain the observa-
ions and ground-truth of trajectories, which constitute the input-output
airs for the DeepMTT network. In fact, it is difficult to obtain suffi-
ient ground-truth data of maneuvering-target trajectory in civil airport
urveillance. Instead, based on the state space model (SSM) [7] , we de-
ign a trajectory generator that can simulate the segments of different
aneuvering target trajectories, which are viewed as samples in our

AST database. To guarantee that the trajectories in our LAST database
an match the real tracking scenario, all the parameters used to generate
he trajectories are set according to the real scenarios. Here, 10 million
amples are generated by the trajectory generator to establish the LAST
atabase, which cover all common cases of maneuvering targets in the
ir traffic control (ATC) system [7,12] . 

Specifically, the SSM of the trajectory generator is defined as fol-
ows: 

𝐫 𝐚𝐧𝐬𝐢𝐭 𝐢𝐨𝐧 𝐞𝐪𝐮𝐚𝐭 𝐢𝐨𝐧 ∶ 𝒙 𝑘 = 𝑭 𝒙 𝑘 −1 + 𝒏 , (1a) 

𝐛𝐬𝐞𝐫 𝐯𝐚𝐭 𝐢𝐨𝐧 𝐞𝐪𝐮𝐚𝐭 𝐢𝐨𝐧 ∶ 𝒛 𝑘 = 𝒉 ( 𝒙 𝑘 ) + 𝒎 , (1b) 

here x k and z k are the target state and the corresponding observation
t time step k , respectively. In transition equation (1a) , F is the transi-
ion matrix, and n is the transition noise. In the observation equation of
1b) , h ( · ) is the nonlinear observation, and w is the observation noise.
ccording to the SSM, the ground-truth 𝒙 1∶ 𝐾 ≜ { 𝒙 1 , 𝒙 2 , … , 𝒙 𝐾 } of trajec-

ories is generated by (1a) , and the observations 𝒛 1∶ 𝐾 ≜ { 𝒛 1 , 𝒛 2 , … , 𝒛 𝐾 }
re generated by (1b) . To produce proper data for our LAST database,
he SSM is analyzed in detail as follows. 

In this paper, we only consider an X-Y plane coordi-
ate of maneuvering-target tracking. Thus, x k is defined as
 d x, k , d y, k , v x, k , v y, k ] 

T , where [ d x,k , d y,k ] 
T is the two-dimensional

2-D) position, and [ v x, k , v y, k ] 
T is the corresponding velocity. The
291 
ransition matrix F of (1a) is defined in two shapes, constant velocity
CV) and constant turn (CT) shapes, to satisfy the requirement in
enerating maneuvering-target trajectories. According to [32] , the CV
hape is defined as 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 𝑠 𝜏 0 
0 1 0 𝑠 𝜏
0 0 1 0 
0 0 0 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
, (2) 

or the case of aircraft cruising. The CT shape is defined as 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 sin ( 𝛼𝑠 𝜏 ) 
𝛼

cos ( 𝛼𝑠 𝜏 )−1 
𝛼

0 1 1− cos ( 𝛼𝑠 𝜏 ) 
𝛼

sin ( 𝛼𝑠 𝜏 ) 
𝛼

0 0 cos ( 𝛼𝑠 𝜏 ) − sin ( 𝛼𝑠 𝜏 ) 
0 0 sin ( 𝛼𝑠 𝜏 ) cos ( 𝛼𝑠 𝜏 ) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
, (3) 

or the case of aircraft maneuvering. In the above equations, s 𝜏 is the
ampling interval of trajectories, which is set to be 0.1 s in our LAST
atabase; 𝛼 is the turn rate of maneuvering target. For radar tracking,
 𝑘 = [ 𝜃𝑘 , 𝑟 𝑘 ] T is the radar observation vector which contains azimuth
alue 𝜃k and distance value r k . In addition, h ( · ) of (1b) is denoted as
ollows: 

[ 
𝜃𝑘 
𝑟 𝑘 

] 
⏟⏟
𝒛 𝑘 

= 

⎡ ⎢ ⎢ ⎣ 
arctan 𝑑 𝑦,𝑘 

𝑑 𝑥,𝑘 √ 

𝑑 2 
𝑥,𝑘 

+ 𝑑 2 
𝑦,𝑘 

⎤ ⎥ ⎥ ⎦ + 

[ 
𝑚 𝜃

𝑚 𝑟 

] 
⏟⏟⏟

𝒎 

, (4)

here 𝒎 = [ 𝑚 𝜃 , 𝑚 𝑟 ] T is the noise of observation vector, which contains
he azimuth and distance parts, i.e., m 𝜃 and m r . 

Using the SSM, 𝒛 1∶ 𝐾 ≜ { 𝒛 1 , 𝒛 2 , … , 𝒛 𝐾 } and 𝒙 1∶ 𝐾 ≜ { 𝒙 1 , 𝒙 2 , … , 𝒙 𝐾 }
an be generated, given the parameters of the SSM, i.e., the number
f time steps K , initial state x 0 , noises n and m , and transition matrix F .
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Table 2 

Ranges of Maneuvering Target Trajectories. 

Content Ranges 

Distance from radar 0.5 ∼20 ( nautical mile ) 

Velocity of aircraft 0 ∼340 ( m / s ) 

Maneuvering turn rate −10 ∼ 10 ( ◦∕ 𝑠 ) 
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Before generating the samples of our LAST database, we must deter-
ine the range of target trajectory segments to ensure that they cover

ll possible maneuvering cases. 
As shown in Table 2 , the distance from the radar to the target cov-

rs the main detection range of the common airport surveillance radar
ASR), i.e., 0.5 ∼ 20 nautical miles (NM) (about 926 m ∼ 37,040 m),
ccording to [33] . Then, we set the velocity of our maneuvering target
n the range of 0–340 m/s because civilian aircrafts rarely exceed the
ound velocity [34] , i.e., 340 m/s. The turn rate 𝛼, which decides the
aneuvering cases, ranges from −10 ◦∕ 𝑠 to 10 ∘/ s because it is normally

ess than 10 ∘/ s for the common civilian aircraft according to [7] . The
mallest interval between turn rates is 0.1 ∘/ s , which provides sufficient
ifferentiation to track the maneuvering target. 

Accordingly, we derive the parameters of the SSM as follows: 
(1) In our LAST database, the length of trajectory segments t segmet 

s defined to be 5 s because the fixed length of trajectory segments is
equired in our DeepMTT network. In practice, a long trajectory can be
onsidered a combination of several trajectory segments. 

(2) We calculate the initial state x 0 using polar decomposition.
hus, all generated trajectory segments satisfy the main radar detection
anges. Specifically, to ensure that the entire trajectory is in the main
adar detection ranges, the initial distance of our target is set to range
rom 926 + 𝑉 max × 𝑡 segmet to 37 , 040 − 𝑉 max × 𝑡 segmet , where 𝑉 max = 340 m/s
s the maximum velocity of aircrafts as discussed above. Then, we uni-
ormly sample a random distance D random 

from this range to obtain the
nitial positions ( d x ,0 , d y ,0 ) of the trajectory in the X and Y directions
s 

 𝑥, 0 = 𝐷 random ⋅ cos ( 𝜃distance ) , (5a)

 𝑦, 0 = 𝐷 random ⋅ sin ( 𝜃distance ) , (5b)
ig. 2. The ground-truth of trajectories. All 50,000 ground-truths are depicted in th

gure, i.e., the upper right subfigure, to give more details of the trajectories. (For inte

o the web version of this article.) 

292 
here 𝜃distance , which is uniformly sampled from -180 ∘ to 180 ∘, is the
ntersection angle between the north and the direction from the radar
o the target. Likewise, the initial velocities ( v x , 0 , v y , 0 ) in the X and Y
irections are calculated as 

 𝑥, 0 = 𝑉 random ⋅ cos ( 𝜃velocity ) , (6a) 

 𝑦, 0 = 𝑉 random ⋅ sin ( 𝜃velocity ) , (6b) 

here V random 

is the random velocity and uniformly sampled from 0 m/s
o 340 m/s. In addition, 𝜃velocity , which is uniformly sampled from -180 ∘

o 180 ∘, is the intersection angle between the north and the initial di-
ection of the target velocity. Accordingly, we obtain the initial state of
he trajectory segment as x 0 ≜[ d x , 0 , d y , 0 , v x , 0 , v y , 0 ] 

T . 
(3) According to [35] , the transition noise n and observation noise

 are defined as follows: 

𝒏 = [ 𝑛 𝑑 , 𝑛 𝑑 , 𝑛 𝑣 , 𝑛 𝑣 ] T , 

𝑛 𝑑 ∼  ( 𝑛 𝑑 ; 0 , 𝜎2 𝑑 ) , 𝑛 𝑣 ∼  ( 𝑛 𝑣 ; 0 , 𝜎2 𝑣 ) , (7) 

𝒎 = [ 𝑚 𝜃 , 𝑚 𝑟 ] T , 

𝑚 𝜃 ∼  ( 𝑚 𝜃 ; 0 , 𝜎2 𝜃 ) , 𝑚 𝑟 ∼  ( 𝑚 𝑟 ; 0 , 𝜎2 𝑟 ) . (8) 

n (7) , 𝜎𝑑 = 0 . 5 𝜎𝑎 𝑠 2 𝜏 and 𝜎𝑣 = 𝜎𝑎 𝑠 𝜏 are the standard deviations of tran-
ition noise for distance and velocity, respectively; 𝜎a is the standard
eviation of accelerated velocity noise that is randomly sampled in the
ange of [8 m / s 2 , 13 m / s 2 ] according to [7] . In (8) , the deviations of az-
muth noise 𝜎𝜃 and distance noise 𝜎r are randomly sampled in the range
f [0.401 ∘, 0.516 ∘] and [8 m , 13 m ] according to [19,36] , respectively. 

(4) The maneuvering cases depend on the value of turn rate 𝛼, which
s randomly sampled from −10 ◦∕ 𝑠 to 10 ∘/ s with the sampling interval of
.1 ∘/ s as discussed. If 𝛼 = 0 , we use the transition equation of (1a) with
he transition matrix F in the CV shape of (2) to generate the trajec-
ory. Otherwise, we use (1a) with F in the CT shape (3) to generate the
rajectory. 

After all settings have been obtained for the SSM, we generate 10 mil-
ion samples, which are randomly and equally grouped into 100 thou-
and batches, i.e., each batch contains 100 samples. We randomly select
0,000 ground-truths of trajectory segments from our LAST database
nd visualize them in Fig. 2 . As shown in this figure, the trajectory
e same figure. A small area marked by red rectangle is zoomed into a bigger 

rpretation of the references to colour in this figure legend, the reader is referred 
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Fig. 3. Three samples in the LAST database. Each sample contains the ground- 

truth of a trajectory segment and the two corresponding observations, i.e., az- 

imuth and distance, respectively. 
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egments in our LAST database cover the main detection area of ASR
ith different types of maneuvering cases. The true samples of our LAST
atabase are shown in Fig. 3 . Specifically, the first and second columns
f Fig. 3 are the observations of trajectory segments, including the az-
muth and distance data, respectively. The last column is the ground-
ruth of the trajectory segment. Note that the fluctuations in the azimuth
nd distance are caused by noises n and m in the SSM. 

. Deep Learning Maneuvering Target-Tracking Algorithm 

In this section, we present the details of our DeepMTT algorithm 

3 Un-
ike the traditional tracking algorithms, our DeepMTT algorithm tracks
he target based on a DeepMTT network, which is trained off-line. The
eepMTT network can output residuals to directly correct the UKF track-

ng results, by which the maneuvering trajectories are timely and pre-
isely estimated. The DeepMTT algorithm contains two stages: train-
ng and tracking stages, as shown in Fig. 4 . In the training stage, the
riginal observations and ground-truth are first pre-processed to gen-
rate the modified input-output pairs, which are suitable for training
he DeepMTT network. The modified inputs are normalized trajectory
egments tracked by UKF, and the modified outputs are residuals be-
ween the ground-truth and the estimated trajectory segments. Then,
ith those modified input-output pairs, the DeepMTT network is trained

o predict the residuals using a loss function defined by the root mean
quare error (RMSE). In the tracking phase, the same pre-process step is
sed to estimate the trajectory segments. Those estimations of segments
re corrected by the residuals predicted from the DeepMTT network. Fi-
ally, an entire maneuvering trajectory is estimated with the corrected
egments using a reconstruction step. The details of our DeepMTT net-
ork are presented as follows. 

.1. Pre-processing step 

There are two major problems when we directly use samples in our
atabase to train the network: 1) the activations of the units in the first
idden layer fall into the 0-gradient region (which we call the saturated
egion in this paper), and 2) there is partial data feature loss. 

bservation 1. If the input data for network unit are larger than 18,
he activations in units, such as tanh and hard-tanh activations, have
allen into the saturated region and block the back-propagation of loss. 

nalysis 1. In back-propagation, the loss of the current unit 𝛿 is calcu-
ated as follows: 

= 𝜙′( 𝑢 ) 𝐿 𝑝 , (9)
3 Open resource codes: https://github.com/ljx43031/DeepMTT-algorithm . 

t  

f  

e
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here 𝜙′ ( u ) is the derivative of activation function 𝜙( u ) in the current
nit with input u . In addition, L p is the sum of the loss of the previous
ayer. According to [30] , the tanh activation function is defined as 

tanh ( 𝑢 ) = 

𝑒 2 𝑢 − 1 
𝑒 2 𝑢 + 1 

. (10)

ence, the derivative of tanh function is calculated as follows: 

′
tanh ( 𝑢 ) = 1 − 𝜙tanh ( 𝑢 ) 2 . (11)

oreover, according to [37] , the hard-tanh activation function is de-
ned as 

hard−tanh ( 𝑢 ) = max ( min ( 𝑢, 1) , −1) . (12)

hus, the derivative of hard-tanh function is calculated as follows: 

′
hard−tanh ( 𝑢 ) = 

{ 

1 , −1 < 𝑢 < 1 
0 , else (13)

hose derivatives are shown in Fig. 5 . Obviously, when input | u | > 18,
e have |𝜙′

tanh ( 𝑢 ) | < 8 . 8818 𝑒 − 16 and 𝜙′
hard−tanh ( 𝑢 ) = 0 . Hence, the input

 u | > 18 has pushed the activation of a unit towards the 0-gradient region
37] , i.e., saturated region, which makes the loss vanish in this unit and
inders the loss from back-propagating. 

This completes the analysis of Observation 1 . 

First, we notice that the distances of the input data are 926–
7,040 m. According to observation 1 , this large input value has pushed
he activations of the units in the first hidden layer into the saturated re-
ion and hindered the back-propagation of loss. Second, the azimuths of
nput data are too small in comparison with the distances. When they are
ed into the network and combined with distances based on a random
eight matrix, their data features are “submerged ” by the distance data.
o solve these problems, a pre-processing step is developed to modify
he input-output pairs of samples, which are suitable for training. Thus,
he loss of our DeepMTT network can be guaranteed to converge to a
atisfactory small value. The pre-processing step is summarized in Fig. 6 .
s shown in Fig. 6 , on the one hand, we filter the azimuth and distance
ata by the UKF algorithm with the transition matrix in the CV shape
CV–UKF), by which the input data with observation space have been
hanged into the target state space. Thus, we can obtain the estimated
rajectory segment: 𝒙̂ 1∶ 𝐾 ≜ { ̂𝒙 1 , ̂𝒙 2 , … , ̂𝒙 𝐾 } containing the position and
elocity data. Then, 𝒙̂ 1∶ 𝐾 is normalized to generate the final input data
̂ 
𝑁 
1∶ 𝐾 for the DeepMTT network as follows: 

̂ 
𝑁 
1∶ 𝐾 ≜ { ̂𝒙 𝑁 1 , ̂𝒙 

𝑁 
2 , … , ̂𝒙 𝑁 𝐾 } 

= { ̂𝒙 1 ∕ 𝐶 max , ̂𝒙 2 ∕ 𝐶 max , … , ̂𝒙 𝐾 ∕ 𝐶 max } , 

here C max is the maximum absolute value in the elements of 𝒙̂ 1∶ 𝐾 .
bviously, the range of normalized data in 𝒙̂ 𝑁 1∶ 𝐾 is [-1,1], which avoids

he activation of a unit falling into the saturated region. Moreover, the
ifference between the velocity and position data is much smaller than
hat between the azimuth and distance data. Thus, the problem of partial
ata feature loss can be relieved to a great extent. 

Meanwhile, the desired output of the DeepMTT network is the resid-
al sequence r 1: K , which is denoted as: 

 1∶ 𝐾 = 𝒙 1∶ 𝐾 − 𝒙̂ 1∶ 𝐾 , (14)

here x 1: K is the ground-truth of the trajectory segment. Taking 𝒙̂ 1∶ 𝐾 
s a reference of the ground-truth, r 1: K is the relative error between
he ground-truth and its reference. Obviously, r 1: K mainly contains the
nformation of diversity among different trajectories causing by differ-
nt movement models without the information of absolute data in the
rajectory such as positions and velocities. As a result, r 1: K has less in-
ormation that must be learned than the ground-truth x 1: K . Hence, it is
asier to learn by our DeepMTT network. 

https://github.com/ljx43031/DeepMTT-algorithm
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Fig. 4. The framework of DeepMTT algorithm. The upper part shows the training stage, in which the pre-processing data is used to train the DeepMTT network 

according to a designed loss function. The bottom part shows the tracking stage, in which the trained DeepMTT network is used to generate the estimations of 

trajectory segments. Then, an entire trajectory is reconstructed by those segments. 

Fig. 5. Derivatives of tanh and hard-tanh activation functions. 
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.2. The DeepMTT network 

The DeepMTT network is used to learn the information of input se-
uence 𝒙̂ 𝑁 1∶ 𝐾 , to output the estimations of r 1: K . Once the network is well
rained, it can directly output those estimations within an acceptable er-
or range, without any information of the ground-truth. The DeepMTT
etwork is developed with three bidirectional LSTM layers, a filtering
ayer, a maxout layer, and a linear output layer. By feeding the input
ata 𝒙̂ 𝑁 1∶ 𝐾 to our DeepMTT network, the regression prediction of r 1: K 

s yielded. Then, the corrected trajectory segment can be estimated as
ollows: 

̃ 1∶ 𝐾 = ̃𝒓 1∶ 𝐾 + 𝒙̂ 1∶ 𝐾 , (15)
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here ̃𝒓 1∶ 𝐾 is the regression prediction of r 1: K output by the DeepMTT
etwork. The structure of our DeepMTT network is summarized in Fig. 7 .

Feed-forward data flow: 

The details of the feed-forward data flow are shown in Fig. 7 . First,
e filter the input data sequence 𝒙̂ 𝑁 1∶ 𝐾 with a five-point sliding window

o reduce the noise of the input data. This window is set to be a 5 ×4
atrix as follows: 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝐴 1 , 1 𝐴 1 , 2 𝐴 1 , 3 𝐴 1 , 4 
𝐴 2 , 1 𝐴 2 , 2 𝐴 2 , 3 𝐴 2 , 4 
𝐴 3 , 1 𝐴 3 , 2 𝐴 3 , 3 𝐴 3 , 4 
𝐴 4 , 1 𝐴 4 , 2 𝐴 4 , 3 𝐴 4 , 4 
𝐴 5 , 1 𝐴 5 , 2 𝐴 5 , 3 𝐴 5 , 4 , 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(16)

here A i,j with i ∈ [1: 5] and j ∈ [1: 4] is the learnable parameter of our
liding window. As we know, 𝒙 𝑁 

𝑘 
includes 4 elements: the elements of

istance in the X and Y directions 𝑑 𝑁 
𝑥,𝑘 

and 𝑑 𝑁 
𝑦,𝑘 

and elements of velocity

n the X and Y directions 𝑣̂ 𝑁 
𝑥,𝑘 

and 𝑣̂ 𝑁 
𝑦,𝑘 

. Each element in 𝒙 𝑁 
𝑘 

is filtered by
ach independent column in A with the time steps as follows: 

 ̂

𝐹 
𝑥,𝑘 = 𝐴 1 , 1 𝑑 

𝑁 
𝑥,𝑘 −4 + 𝐴 2 , 1 𝑑 

𝑁 
𝑥,𝑘 −3 …+ 𝐴 5 , 1 𝑑 

𝑁 
𝑥,𝑘 , (17) 

 ̂

𝐹 
𝑦,𝑘 = 𝐴 1 , 2 𝑑 

𝑁 
𝑦,𝑘 −4 + 𝐴 2 , 2 𝑑 

𝑁 
𝑦,𝑘 −3 …+ 𝐴 5 , 2 𝑑 

𝑁 
𝑦,𝑘 , (18) 

̂ 𝐹 𝑥,𝑘 = 𝐴 1 , 3 ̂𝑣 
𝑁 
𝑥,𝑘 −4 + 𝐴 2 , 3 ̂𝑣 

𝑁 
𝑥,𝑘 −3 …+ 𝐴 5 , 3 ̂𝑣 

𝑁 
𝑥,𝑘 , (19) 

̂ 𝐹 𝑦,𝑘 = 𝐴 1 , 4 ̂𝑣 
𝑁 
𝑦,𝑘 −4 + 𝐴 2 , 4 ̂𝑣 

𝑁 
𝑦,𝑘 −3 …+ 𝐴 5 , 4 ̂𝑣 

𝑁 
𝑦,𝑘 . (20) 

ote that 𝒙̂ 𝑁 −3 , 𝒙̂ 
𝑁 
−2 , 𝒙̂ 

𝑁 
−1 and 𝒙̂ 𝑁 0 are set to be zero vectors O because

hey do not exist. Furthermore, the symbol 𝒙̂ 𝐹 𝑘 in Fig. 7 is defined as
̂ 
𝐹 
𝑘 ≜ [ ̂𝑑 𝐹 

𝑥,𝑘 
, 𝑑 𝐹 

𝑦,𝑘 
, 𝑣̂ 𝐹 

𝑥,𝑘 
, 𝑣̂ 𝐹 

𝑦,𝑘 
] T . 
Fig. 6. Pre-processing for trajectory data. This pre- 

processing outputs the normalized state sequence as 

network input and the residuals as the ground-truth of 

network output. 
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Fig. 7. Structure of the DeepMTT network. In this struc- 

ture, the input data flow along with the arrows through all 

the layers, and finally become the prediction of r 1: K . 
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Fig. 8. Noisy activation function. It contains noises both in saturated and un- 

saturated regions. 
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Second, because the LSTM structure is “good at ” learning the tem-
oral features in the sequential data, three bidirectional LSTM layers
re integrated into our DeepMTT network. These LSTM layers are used
o process 𝒙̂ 𝐹 1∶ 𝐾 and expected to output the sequence 𝒉 𝐿 1∶ 𝐾 , which con-
ains the temporal correlation information of residual r 1: K . Thus, our
eepMTT network can be trained to predict the temporal correlation in

rajectories. Specifically, the first and second layers have 128 and 256
nits, respectively. The units in these two layers have the noisy activa-
ion [37] . The third layer has 256 units with the tanh activation. In the
rst two layers, the noisy activation function is defined as follows: 

𝑛 ( 𝑢, 𝜉) = 𝜙𝑝 ( 𝑢 ) + 𝜎( 𝑢 ) 𝜉, (21)

here u is the input of the noisy activation function. In addition, 𝜉 is
oise following a normal distribution. In addition, 𝜙p ( u ) is a hard-tanh
ctivation function defined as 

𝑝 ( 𝑢 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
0 . 5 𝑢 > 1 
0 . 5 𝑢 −1 ≤ 𝑢 ≤ 1 
−0 . 5 𝑢 < −1 , 

(22)

n addition, 𝜎( u ) is a scaling function of noise 𝜉 as follows, 

( 𝑢 ) = ( sigmoid (ϕp (u) − u) − 0 . 5) 2 . (23)

ne example of the noisy activation function is shown in Fig. 8 . 
As introduced in [37] , the noisy activation function enables the

odes to make hard-decisions, by which no information is lost through
he soft-gating architecture. In addition, the added noise can alleviate
he problem of gradient vanishing in the saturated region of nodes be-
ause the gradient is non-zero in that region. Thus, the loss can be
ack-propagated through the layers to properly train the network, even
hen the nodes are saturated. Furthermore, unlike the original activa-

ion function [37] , we multiply the hard-tanh activation function by 0.5,
s shown in (22) . This trick guarantees that the noise is added to our
ctivation function in the saturated region and unsaturated region, as
hown in Fig. 8 . Thus, random changes also occur in the unsaturated
egion to enable the process of gradient descent to avoid the local min-
mum in the entire region of nodes. 

Third, to enhance the performance of regression fitting of our
eepMTT network, a maxout layer [31] is implemented. This layer is

o select a subnetwork in DeepMTT, which can generate the maximum
295 
utput subset 𝒉 𝑀 

1∶ 𝐾 in the entire output space. Thus, a part of the net-
ork, which is insensitive to the input data, has been dropped, and the
ther part that is sensitive to the input data is trained. Therefore, our
eepMTT network becomes easier to learn the information in the input
ata and achieves good fitting results. Specifically, the maxout layer is
esigned as follows: at each time step k , 𝒉 𝐿 𝑘 is passed through an all link
ayer (ALL) to generate a new tensor h k , which has N nodes. Each node
s denoted as h k ( i ) ∈h k , i ∈ [1, N ]. Then, h k is mapped to the maxout
utput layer (MOL) with the maxout units (MU). Mathematically, the
apping of h k can be represented by the following function: 

 

𝑀 

𝑘 ( 𝑖 ) = max 
𝑗∈[1∶ 𝑆] 

ℎ 𝑘 (( 𝑖 − 1) 𝑆 + 𝑗) , (24)

here S is the number of nodes in each subset, and i ∈ [1: I ], I is the
umber of subsets 𝐼 × 𝑆 = 𝑁 . (24) shows that each node ℎ 𝑀 

𝑘 
( 𝑖 ) is the

aximum node in the subset { ℎ 𝑘 (( 𝑖 − 1) 𝑆 + 𝑗)} 𝑆 
𝑗=1 . 

Finally, to obtain the desired output of our DeepMTT network, i.e.,
he prediction of the residual sequence ̃𝒓 1∶ 𝐾 , the output of maxout layer
 

𝑀 

1∶ 𝐾 must pass through another ALL to restore itself to the shape of r 1: K 

ith the linear activation function: 𝜙 ( 𝑢 ) = 𝑢 . 
𝑜 
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Fig. 9. Reconstruction step in the DeepMTT algorithm. 

Given the observation segments, DeepMTT network can 

generate the corresponding corrected trajectory segments, 

which are combined together with 4 s overlap. The value 

of the trajectory in overlap region is the mean of all seg- 

ments. 
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Error backward propagation: 

The loss for training the DeepMTT network is defined as the RMSE
oss: 

 = 

√ √ √ √ 

𝐾 ∑
𝑘 =1 

( ̃𝒓 𝑘 − 𝒓 𝑘 ) 2 . (25)

n the procedure of error backward propagation, the RMSE loss is min-
mized to train the DeepMTT network using the minibatch gradient
escent method. Each minibatch has 100 samples. Finally, the trained
eepMTT network is obtained when the mean of errors of the estimated
 and Y positions is less than a threshold 𝜖. The training procedure and

hreshold 𝜖 are discussed in the next section. 

.3. Reconstruction step 

To estimate the entire maneuvering trajectory, the corrected trajec-
ory segments 𝒙̃ 1∶ 𝐾 output from the DeepMTT network are connected
ith a reconstruction step. In this step, first, the length of the over-

ap region between adjacent segments is determined, which is used to
uarantee the stability in segment combination. With the overlap re-
ion, the corrected trajectory segments are jointed in sequence. The
alue of the trajectory in the overlap region is the average of the ad-
acent segments. Specifically, we assume that the previously estimated
art of the trajectory is 𝒙̃ 1∶ 𝐾 𝑝 with K p time steps. The overlap region
asts K o time steps. Then, we extract the next observation segment from
 𝑝 − 𝐾 𝑜 + 1 to 2 𝐾 𝑝 − 𝐾 𝑜 to calculate the next corrected trajectory seg-
ents ̃𝒙 next 𝐾 𝑝 − 𝐾 𝑜 +1∶2 𝐾 𝑝 − 𝐾 𝑜 

with the beginning point ̃𝒙 𝐾 𝑝 − 𝐾 𝑜 . Next, we com-

ine ̃𝒙 1∶ 𝐾 𝑝 and ̃𝒙 next 𝐾 𝑝 − 𝐾 𝑜 +1∶2 𝐾 𝑝 − 𝐾 𝑜 
to make the new estimated part of the

rajectory: ̃𝒙 ′1∶2 𝐾 𝑝 − 𝐾 𝑜 
. The value of the target state in the overlap region

s calculated as: 

̃ ′𝐾 𝑝 − 𝐾 𝑜 + 𝑖 
= 0 . 5( ̃𝒙 𝐾 𝑝 − 𝐾 𝑜 + 𝑖 + ̃𝒙 

next 
𝐾 𝑝 − 𝐾 𝑜 + 𝑖 

) , (26)

here i is from 1 to K o . We repeat the aforementioned steps to con-
atenate the remaining corrected trajectory segments and reconstruct
n entire trajectory. 

Note that the entire trajectory for testing the DeepMTT algorithm is
et to be 100 s, and the segment output by the DeepMTT network is 5 s.
n this paper, the time of overlap is set to be 4 s; then, the reconstruction
tep can be summarized in Fig. 9 . 

As shown in this figure, in the entire tracking procedure, 5-s observa-
ion segments are sequentially obtained with 1-s intervals. All observa-
ion segments are fed into the DeepMTT network one by one. Then, the
296 
orresponding corrected trajectory segments are sequentially calculated
nd concatenated to be our final trajectory. 

. Simulation results 

In this section, we present the simulation results to verify the ef-
ectiveness of the proposed DeepMTT algorithm. First, the simulation
cenarios of maneuvering target tracking are set to test the perfor-
ance of the DeepMTT algorithm. Then, the training parameters for

ur DeepMTT network are discussed. Third, the effectiveness of the
eepMTT structure is validated by the ablation experiments. Finally,

he performance of our DeepMTT algorithm is evaluated in comparison
ith HGMM [19] and MIE-BLUE-IMM [18] algorithms. 

.1. Simulation scenarios 

In our simulation, we follow [16] to consider the X-Y plane ma-
euvering tracking in the ATC system. The target trajectories and cor-
esponding observations can be calculated by (1), (2), (3) and (4) of
ection 2 . Moreover, based on civil aircraft maneuvering parameters
7,12] , we designed 11 maneuvering target trajectories, which cover
he radar tracking area and maneuvering turn rate for civil aircrafts, as
hown in Table 2 . 

Specifically, each trajectory lasts for 100 s and is sliced into three
arts, whose parameters are defined in Table 3 . The trajectory “test-
ng ”, whose parameters are shown in the first row in this table, is only
or testing our DeepMTT network in the training stage. The other 10
rajectories are used to validate the effectiveness of our DeepMTT al-
orithm in comparison with state-of-the-art MM tracking algorithms,
.e., HGMM and MIE-BLUE-IMM algorithms. The 10 trajectories in our
imulation are shown in Fig. 10 . The observation area of the radar in
ig. 10 is between the red dash circle and the black dot circle. The 10
rajectories are randomly located in this observation area with different
aneuvering turn rates, including several extreme turn rates, such as
9 . 19 ◦ and 9.13 ∘, which only appear in emergency situations. 

.2. Discussion on the training parameters 

In this subsection, the training parameters, including the learning
ate, batch size and training threshold 𝜖 of estimated position errors,
re discussed. In the entire training procedure, we use different learning
ates and different batch sizes according to different training losses. At
he beginning of the training, the learning rate is set to 10 −3 , and the
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Table 3 

Setting of 10 trajectories. 

Trajectory Prior target state x 0 The first part The second part The third part 

testing [8000 m, 9000 m, 150 m/s, 200 m/s] 30 s, CV model 40 s, CT model, 𝛼= 3.18 ∘ 30 s, CT model, 𝛼= -6.54 ∘

1 [-18000 m, 2000 m, 150 m/s, 200 m/s] 30 s, CV model 40 s, CT model, 𝛼= 3.18 ∘ 30 s, CT model, 𝛼= -6.54 ∘

2 [-7000 m, -24000 m, 180 m/s, 220 m/s] 40 s, CT model, 𝛼= -1.08 ∘ 20 s, CV model 40 s, CT model, 𝛼= 5.34 ∘

3 [12000 m, 13000 m, 230 m/s, 190 m/s] 30 s, CV model 40 s, CT model, 𝛼= -7.16 ∘ 30 s, CT model, 𝛼= 4.24 ∘

4 [5000 m, -5000 m, 10 m/s, 330 m/s] 20 s, CV model 60 s, CT model, 𝛼= 3.26 ∘ 20 s, CV model 

5 [25000 m, -6000 m, 120 m/s, 230 m/s] 22 s, CV model 56 s, CT model, 𝛼= 7.16 ∘ 22 s, CV model 

6 [20000 m, -20000 m, -220 m/s, -200 m/s] 60 s, CT model, 𝛼= -0.58 ∘ 10 s, CV model 30 s, CT model, 𝛼= -2.21 ∘

7 [-15000 m, -25000 m, 100 m/s, 280 m/s] 60 s, CT model, 𝛼= 0.17 ∘ 30 s, CV model 10 s, CT model, 𝛼= -9.19 ∘

8 [-25000 m, -15000 m, -120 m/s, 200 m/s] 30 s, CT model, 𝛼= -6.18 ∘ 50 s, CT model, 𝛼= 8.33 ∘ 20 s, CT model, 𝛼= -2.21 ∘

9 [-30000 m, -5000 m, 250 m/s, 180 m/s] 55 s, CT model, 𝛼= -1.15 ∘ 15 s, CT model, 𝛼= 9.13 ∘ 30 s, CV model 

10 [-10000 m, 25000 m, 220 m/s, 213 m/s] 40 s, CT model, 𝛼= -3.38 ∘ 20 s, CT model, 𝛼= 6.82 ∘ 40 s, CT model, 𝛼= -1.17 ∘

Fig. 10. Ten maneuvering target trajectories. They almost cover different regions of the radar detection ranges and different kinds of maneuvering patterns. 

Fig. 11. Errors of the position estimated by the DeepMTT network in training. 
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4 The target moves from the bottom up along with the trajectory; thus, the 

second half of tracking period is the top half of the trajectory in the sub-figures. 
5 The performances of those state-of-the-art algorithms are shown in 

Section 4.4 . 
atch size is 100 samples. After 5000 training steps, we find that the
raining loss no longer reduces. This because a large learning rate may
ake the network parameters fluctuate in a large range, which hinders

he training loss from decreasing. Therefore, we reduce the learning rate
o 10 −4 and train the DeepMTT network in another 10,000 training steps.
fterwards, we further reduce the learning rate to be 10 −5 and shrink

he batch size to be 20 samples in each training step for the additional
5,000 training steps. In the entire training stage, the estimated position
rrors every 10 2 training steps are shown sequentially in Fig. 11 . 

When the errors are approximately 41, 34, 27, 20 and 15 m, we test
he performance of our DeepMTT algorithm by tracking the same 100-s
297 
aneuvering target trajectory “testing ” in Table 3 . The results are shown
n Fig. 12 . 

Fig. 12 -(a), (b) and (c) shows that when the estimated position er-
ors in training are larger than 20 m, the DeepMTT algorithm cannot
recisely track the trajectory of the maneuvering target. In particular,
uring the second half of the tracking period 4 , the tracking algorithm
ails to track the target and outputs the wrong positions. On the contrary,
hen the estimated position errors are smaller than 20 m, as shown in
2 -(d) and (e), our tracking algorithm can precisely track the target dur-
ng both the first and second halves of the tracking period. For exam-
le, the RMSE of position estimation in (d) is 34.6 m, which is smaller
han that of the state-of-the-art maneuvering target tracking algorithms
18,19] . 5 Therefore, we set the threshold 𝜖 of estimated position errors
o be 20 m. Once the DeepMTT network is trained to output smaller er-
ors than 20 m, our DeepMTT algorithm can be guaranteed to track the
aneuvering target with a tolerable RMSE. 

.3. Ablation experiments 

In this subsection, three ablation experiments are conducted to val-
date the effectiveness of the filtering layer, maxout layer and noisy ac-
ivation function in our DeepMTT network. The ablation results are dis-
ussed as follows. 
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Fig. 12. Testing results in the training procedure. 

Fig. 13. Training results of the DeepMTT network without the filtering layer. 

Table 4 

Training results of DeepMTT network without the filtering layer. 

Error after 

training(m) 

RMSEs in testing 

RMSE of position(m) RMSE of velocity(m/s) 

39.4 1.479e + 03 1.472e + 02 
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Table 5 

Training results of the DeepMTT network without the maxout layer. 

Error after 

training(m) 

RMSEs in testing 

RMSE of position(m) RMSE of velocity(m/s) 

32.1 7.147e + 02 62.3 
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DeepMTT network without the filtering layer: 

The DeepMTT network without the filtering layer is trained with
0,000 steps based on our LAST database, which is identical to that in
ection 4.2 . The training results are shown in Fig. 13 . 

In Fig. 13 (a), we plot the estimated position errors of the DeepMTT
etwork without the filtering layer with the training steps. Obviously,
he errors are larger than 20 m after training and seriously fluctuate,
lthough they slightly reduce in the later period of training. Hence, as
hown in Fig. 13 (b), the DeepMTT algorithm cannot correctly track the
rajectory “testing ”. 

The details of training results are shown in Table 4 . In this table,
e find that the error after training is 39.4 m. As a result, according

o Section 4.2 , when the DeepMTT network has no filtering layer, our
eepMTT algorithm cannot correctly track the maneuvering target after

raining. As we further observe in Table 4 , the tracking RMSEs of posi-
ion and velocity are 1.479e+03 m and 1.472e+02 m/s, respectively.
hese tracking RMSEs are so large that the radar has undoubtedly lost
he target. 

DeepMTT network without the maxout layer: 

The identical training and testing procedures are run in the DeepMTT
etwork without the maxout layer. The training results are shown in
ig. 14 . 
298 
Fig. 14 (a) shows that the estimated position errors fluctuate to ap-
roximately 32 when the DeepMTT network has no maxout layer. Al-
hough the errors are smaller than that of the DeepMTT network without
 filtering layer, they remain larger than 20 m. Thus, without the max-
ut layer, our DeepMTT algorithm cannot precisely track the target, as
hown in Fig. 14 (b). The details of the tracking RMSE of position and
elocity are shown in Table 5 . 

The values of RMSEs of the position and velocity are larger than those
f the state-of-the-art maneuvering target-tracking algorithm [18,19] .
herefore, without the maxout layer, our DeepMTT algorithm cannot
erform well even after a long time of training. 

DeepMTT network without the noisy activation function: 

We replace the noisy activation function in our DeepMTT network
ith the original tanh activation function. Then, we train and test this
etwork using the procedure of the last subsection. The results are
hown in Fig. 15 . 

As we observe in Fig. 15 (a), the errors slowly decline during the
raining stage and fluctuate at approximately 37 m at the end of the
raining, which indicates that the parameters in the DeepMTT network
all into local minima, and the error cannot decrease. Thus, without
he noisy activation function, it is difficult to obtain the well trained
eepMTT network, and the DeepMTT algorithm cannot precisely track
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Fig. 14. Training results of the DeepMTT network without the maxout layer. 

Fig. 15. Training results of the DeepMTT network without noisy activation function. 

Table 6 

Training results of the DeepMTT network without the noisy activation func- 

tion. 

Error after 

training(m) 

RMSEs in testing 

RMSE of position(m) RMSE of velocity(m/s) 

37.9 1.551e + 03 1.475e + 02 

t  

p
 

t

4

 

1  

(  

t  

s  

p  

t  

a  

w  

i

2  

i  

e  

l  

g  

D  

t  

F  

R  

j  

b  

i  

t  

t  

a  

b  

t  

i  

t  

o  

i  

H  

a  

p  

f

4

 

a  

I  
he target, as shown in Fig. 15 (b). The details of tracking RMSEs of the
osition and velocity are shown in Table 6 . 

Obviously, the values of RMSEs of position and velocity are too large
o satisfy the requirement of maneuvering target tracking. 

.4. Evaluation of the DeepMTT algorithm 

To evaluate the performance of our DeepMTT algorithm, we set
0 maneuvering target-tracking scenarios with 10 different trajectories
trajectories 1–10), as mentioned in Section 4.1 . The parameters of these
rajectories are shown in Table 3 . In each scenario, 100 Monte Carlo
imulations for tracking with our DeepMTT algorithm are run in com-
arison with the HGMM and MIE-BLUE-IMM algorithms. We evaluate
he performance of all three aforementioned algorithms with the means
nd deviations of the tracking RMSE in those 100 simulations. Note that
e apply the default parameter settings of HGMM and MIE-BLUE-IMM

n [19] and [18] . 
The tracking results for all 10 trajectories are shown in Figs. 16–

5 . In these figures, the green lines with star markers are the track-
ng results of the HGMM algorithm, the black lines with dot mark-
299 
rs are the tracking results of the MIE-BLUE-IMM algorithm, the red
ines with circle markers are the tracking results of our DeepMTT al-
orithm, and the blue lines are the original trajectories. Obviously, our
eepMTT algorithm remains precise and stable for tracking all trajec-

ories that cover different beginning states, velocities, and turn rates.
urthermore, we investigate the means and deviations of the tracking
MSE (including position and velocity) of all 100 MC runs for each tra-

ectory. The results are shown in Tables 7 , 8 , 9 and 10 . In these ta-
les, the tracking RMSEs of the three algorithms are compared accord-
ng to different parts of different trajectories in Table 3 . The smallest
racking RMSE is colored sandy-brown in each row, which indicates
hat the corresponding algorithm performs best. Obviously, in Tables 7
nd 9 , all tracking RMSEs of our DeepMTT algorithm are colored sandy-
rown, except the ones for the tracking of the second and third parts in
rajectory 9. Hence, our DeepMTT algorithm provides the smallest track-
ng RMSEs for all different maneuvering trajectories in comparison with
he other two algorithms. Our DeepMTT algorithm also performs well
n the deviations of tracking RMSE, which presents the stability in track-
ng. Although for some parts of some trajectories, the tracking RMSEs of
GMM and MIE-BLUE-IMM are better, our DeepMTT algorithm retains
 comparable performance. In summary, our DeepMTT algorithm out-
erforms the state-of-the-art HGMMM and MIE-BLUE-IMM algorithms
or tracking maneuvering targets. 

.5. Computational complexity 

In this subsection, the computational complexity of our DeepMTT
lgorithm is discussed in comparison with HGMM and MIE-BLUE-
MM algorithms, by means of testing the computational time in single
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Fig. 16. Tracking results of the 1st trajectory. 

Fig. 17. Tracking results of the 2nd trajectory. 

Fig. 18. Tracking results of the 3rd trajectory. 

Fig. 19. Tracking results of the 4th trajectory. 
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Fig. 20. Tracking results of the 5th trajectory. 

Fig. 21. Tracking results of the 6th trajectory. 

Fig. 22. Tracking results of the 7th trajectory. 

Fig. 23. Tracking results of the 8th trajectory. 

301 
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Fig. 24. Tracking results of the 9th trajectory. 

Fig. 25. Tracking results of the 10th trajectory. 

Table 7 

Means of the position tracking RMSE for all trajectories with HGMM, MIE- 

BLUE-IMM and DeepMTT algorithms, respectively. 

Trajectories HGMM (m) MIE-BLUE-IMM (m) DeepMTT (m) 

1 The first part 22.96 121.66 12.67 

The second part 138.29 55.24 12.98 

The third part 237.29 57.76 24.90 

2 The first part 53.47 94.02 13.97 

The second part 23.67 56.45 12.12 

The third part 140.91 55.17 13.24 

3 The first part 23.45 56.50 12.42 

The second part 278.06 59.89 17.63 

The third part 160.58 58.12 16.74 

4 The first part 22.76 78.95 11.02 

The second part 35.04 54.32 13.24 

The third part 8.20 ×10 5 52.80 14.40 

5 The first part 24.37 209.16 13.66 

The second part 204.75 54.71 16.14 

The third part 102.63 61.06 13.62 

6 The first part 24.91 179.29 13.61 

The second part 20.84 63.76 12.76 

The third part 52.08 60.70 19.67 

7 The first part 28.00 64.39 10.67 

The second part 1.60 ×10 5 52.99 12.23 

The third part 9.58 ×10 5 51.87 15.69 

8 The first part 218.87 196.13 15.31 

The second part 236.50 57.70 30.63 

The third part 38.52 58.75 20.29 

9 The first part 83.61 104.38 10.53 

The second part 150.20 48.86 83.47 

The third part 7.82 ×10 6 51.49 64.29 

10 The first part 117.55 183.77 12.90 

The second part 125.73 51.23 16.35 

The third part 101.52 57.96 12.46 

i  

t  

t  

p  

Table 8 

Deviations of the position tracking RMSE for all trajectories with HGMM, 

MIE-BLUE-IMM and DeepMTT algorithms, respectively. 

Trajectories HGMM (m) MIE-BLUE-IMM (m) DeepMTT (m) 

1 The first part 2.92 13.99 2.58 

The second part 12.45 3.06(m) 2.77 

The third part 24.45 3.84 15.65 

2 The first part 6.87 10.06 2.26 

The second part 3.72 4.61 2.65 

The third part 11.77 2.80 2.57 

3 The first part 3.08 3.36 2.37 

The second part 31.43 3.82 12.35 

The third part 20.29 4.21 11.82 

4 The first part 3.55 6.48 2.73 

The second part 2.31 2.40 2.32 

The third part 2.66 ×10 6 4.14 3.85 

5 The first part 3.37 18.79 2.72 

The second part 15.63 2.74 2.27 

The third part 19.23 5.83 3.49 

6 The first part 2.82 16.42 2.06 

The second part 3.67 9.95 3.88 

The third part 7.55 3.87 10.87 

7 The first part 2.62 6.20 1.78 

The second part 4.96 ×10 5 18.94 2.51 

The third part 2.69 ×10 6 25.47 6.70 

8 The first part 25.31 17.36 3.00 

The second part 18.12 11.69 25.71 

The third part 7.43 14.95 13.42 

9 The first part 6.46 12.97 1.95 

The second part 17.39 3.29 34.68 

The third part 3.51 ×10 6 3.15 47.14 

10 The first part 12.95 19.45 2.35 

The second part 17.98 4.57 9.91 

The third part 11.37 3.47 2.66 

a  

o  

a  

a

teration of tracking. For fair comparison, we test all the algorithms with
he same Intel Core i7-3770 CPU at 3.4 GHz and 4 GB RAM. In the
racking process, our DeepMTT algorithm consumes 16.4 ms to com-
ute one iteration in tracking process, and HGMM and MIE-BLUE-IMM
302 
lgorithms consume 201.8 ms and 64.1 ms, respectively. Obviously,
ur DeepMTT algorithm is faster than both HGMM and MIE-BLUE-IMM
lgorithms. Hence, our DeepMTT algorithm is suitable for real-time
pplication. 
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Table 9 

Means of the velocity tracking RMSE for all trajectories with HGMM, MIE-BLUE- 

IMM and DeepMTT algorithms, respectively. 

Trajectories HGMM (m/s) MIE-BLUE-IMM (m/s) DeepMTT (m/s) 

1 The first part 12.38 159.55 3.91 

The second part 45.30 161.19 9.08 

The third part 84.74 162.34 13.88 

2 The first part 18.57 178.53 4.59 

The second part 12.84 153.39 4.11 

The third part 68.83 183.68 7.85 

3 The first part 13.86 190.53 8.45 

The second part 108.93 191.92 7.51 

The third part 59.96 189.75 7.71 

4 The first part 12.72 168.39 4.14 

The second part 25.12 212.51 5.27 

The third part 2.16 ×10 6 184.42 6.35 

5 The first part 11.12 160.03 4.25 

The second part 88.87 168.01 7.51 

The third part 25.73 147.30 5.35 

6 The first part 13.31 182.39 6.61 

The second part 10.73 161.23 9.74 

The third part 23.49 186.33 11.80 

7 The first part 14.26 168.58 2.92 

The second part 6.13 ×10 5 163.29 5.07 

The third part 3.21 ×10 6 190.15 9.91 

8 The first part 75.73 150.80 7.64 

The second part 98.08 152.08 12.88 

The third part 19.41 148.39 8.56 

9 The first part 25.34 176.82 4.01 

The second part 111.65 198.92 27.13 

The third part 2.03 ×10 7 180.54 9.80 

10 The first part 45.85 195.18 5.59 

The second part 71.72 196.58 9.55 

The third part 29.01 186.52 5.28 

Table 10 

Deviations of the velocity tracking RMSE for all trajectories with HGMM, MIE- 

BLUE-IMM and DeepMTT algorithms, respectively. 

Trajectories HGMM (m/s) MIE-BLUE-IMM (m/s) DeepMTT (m/s) 

1 The first part 1.61 2.11 0.91 

The second part 1.30 1.53 1.03 

The third part 2.95 1.59 3.33 

2 The first part 0.97 1.95 0.79 

The second part 1.74 2.59 1.04 

The third part 1.76 1.58 1.08 

3 The first part 1.70 2.05 1.17 

The second part 2.96 1.54 2.56 

The third part 2.40 1.78 1.48 

4 The first part 1.58 2.45 1.14 

The second part 0.69 1.18 0.72 

The third part 6.28 ×10 6 2.36 2.44 

5 The first part 1.26 2.94 0.93 

The second part 1.96 1.50 1.47 

The third part 3.53 2.40 2.08 

6 The first part 1.16 2.71 1.14 

The second part 1.61 3.71 2.31 

The third part 1.28 1.96 2.96 

7 The first part 1.13 1.67 0.51 

The second part 2.55 ×10 6 2.06 0.99 

The third part 9.32 ×10 6 2.27 3.05 

8 The first part 1.99 2.31 0.89 

The second part 2.44 1.56 5.75 

The third part 2.06 2.33 3.02 

9 The first part 1.01 2.12 0.60 

The second part 3.14 1.91 7.54 

The third part 1.13 ×10 7 2.08 4.05 

10 The first part 1.82 1.94 0.88 

The second part 3.27 2.05 3.28 

The third part 1.72 2.07 1.34 
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. Conclusions 

In this paper, we have proposed a new bidirectional LSTM-based
eepMTT algorithm for civil aircraft tracking. First, a generative tra-

ectory database of maneuvering target is built to offer sufficient sam-
les of maneuvering trajectories. Then, a new DeepMTT network is pro-
osed based on the bidirectional LSTM structure. Using this network, we
an estimate the trajectory segments with the corresponding nonlinear
adar observations. Finally, an entire estimated trajectory is estimated
ith a reconstruction step. The simulation results verify that in compar-

son with state-of-the-art maneuvering target tracking algorithms, our
eepMTT algorithm improves the performance on maneuvering-civil-
ircraft tracking scenarios. 

In the application with our DeepMTT algorithm, we need to con-
ider different radar tracking problems with different noises. To handle
hese problems, different noises have been added to the observations
f the samples in our LAST database to improve the generalization per-
ormance of our DeepMTT network. For example, the deviations of az-
muth noise 𝜎𝜃 and distance noise 𝜎r are randomly sampled in the range
f [0.401 ∘, 0.516 ∘] and [8 m , 13 m ], respectively. Hence, our DeepMTT
etwork is fit for all the observation noise within the aforemen-
ioned ranges. However, for total different noise levels, our DeepMTT
etwork do need to be fined tune to achieve the proper tracking
esults. 

There are three promising directions for future work. First, this paper
nly considers the X-Y plane scenario of maneuvering target tracking.
e can extend it into three-dimensional tracking scenarios. Second, al-

hough our training data cover the entire range of turn rate from −10 ◦
o 10 ∘, the tracking performance continues to seriously decrease when
he target moves with a constant turn rate close to ± 10 ∘. Hence, a bet-
er network should be designed to solve this problem, which is another
romising future work. Third, because different parts of our network
ill take different effects on target tracking. How to specify these dif-

erent effects in different layers is valuable for further understanding
he network and improving the tracking performance. Hence, the layer
ffect specification is also a promising future work. 

upplementary material 

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.inffus.2019.06.012 . 
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