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Figure 1: Overview of the proposed network architecture, CFNet. It is an asymmetric Siamese network: after applying the

same convolutional feature transform to both input images, the “training image” is used to learn a linear template, which is

then applied to search the “test image” by cross-correlation.

Abstract

The Correlation Filter is an algorithm that trains a linear

template to discriminate between images and their transla-

tions. It is well suited to object tracking because its formu-

lation in the Fourier domain provides a fast solution, en-

abling the detector to be re-trained once per frame. Pre-

vious works that use the Correlation Filter, however, have

adopted features that were either manually designed or

trained for a different task. This work is the first to over-

come this limitation by interpreting the Correlation Filter

learner, which has a closed-form solution, as a differen-

tiable layer in a deep neural network. This enables learning

deep features that are tightly coupled to the Correlation Fil-

ter. Experiments illustrate that our method has the impor-

tant practical benefit of allowing lightweight architectures

to achieve state-of-the-art performance at high framerates.

1. Introduction

Deep neural networks are a powerful tool for learn-

ing image representations in computer vision applications.

However, training deep networks online, in order to capture

previously unseen object classes from one or few examples,

∗Equal first authorship.

is challenging. This problem emerges naturally in appli-

cations such as visual object tracking, where the goal is to

re-detect an object over a video with the sole supervision of

a bounding box at the beginning of the sequence. The main

challenge is the lack of a-priori knowledge of the target ob-

ject, which can be of any class.

The simplest approach is to disregard the lack of a-priori

knowledge and adapt a pre-trained deep convolutional neu-

ral network (CNN) to the target, for example by using

stochastic gradient descent (SGD), the workhorse of deep

network optimization [31, 25, 35]. The extremely limited

training data and large number of parameters make this a

difficult learning problem. Furthermore, SGD is quite ex-

pensive for online adaptation [31, 25].

A possible answer to these shortcomings is to have no

online adaptation of the network. Recent works have fo-

cused on learning deep embeddings that can be used as uni-

versal object descriptors [3, 12, 28, 17, 5]. These methods

use a Siamese CNN, trained offline to discriminate whether

two image patches contain the same object or not. The idea

is that a powerful embedding will allow the detection (and

thus tracking) of objects via similarity, bypassing the online

learning problem. However, using a fixed metric to compare

appearance prevents the learning algorithm from exploiting

any video-specific cues that could be helpful for discrimi-

nation.

An alternative strategy is to use instead an online learn-
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ing method such as the Correlation Filter (CF). The CF

is an efficient algorithm that learns to discriminate an

image patch from the surrounding patches by solving a

large ridge regression problem extremely efficiently [4, 13].

It has proved to be highly successful in object tracking

(e.g. [6, 18, 22, 2]), where its efficiency enables a tracker

to adapt its internal model of the object on the fly at ev-

ery frame. It owes its speed to a Fourier domain formula-

tion, which allows the ridge regression problem to be solved

with only a few applications of the Fast Fourier Transform

(FFT) and cheap element-wise operations. Such a solution

is, by design, much more efficient than an iterative solver

like SGD, and still allows the discriminator to be tailored to

a specific video, contrary to the embedding methods.

The challenge, then, is to combine the online learning

efficiency of the CF with the discriminative power of CNN

features trained offline. This has been done in several works

(e.g. [21, 7, 9, 31]), which have shown that CNNs and

CFs are complementary and their combination results in im-

proved performance.

However, in the aforementioned works, the CF is simply

applied on top of pre-trained CNN features, without any

deep integration of the two methods. End-to-end training

of deep architectures is generally preferable to training in-

dividual components separately. The reason is that in this

manner the free parameters in all components can co-adapt

and cooperate to achieve a single objective. Thus it is nat-

ural to ask whether a CNN-CF combination can also be

trained end-to-end with similar benefits.

The key step in achieving such integration is to inter-

pret the CF as a differentiable CNN layer, so that errors can

be propagated through the CF back to the CNN features.

This is challenging, because the CF itself is the solution of

a learning problem. Hence, this requires to differentiate the

solution of a large linear system of equations. This paper

provides a closed-form expression for the derivative of the

Correlation Filter. Moreover, we demonstrate the practical

utility of our approach in training CNN architectures end-

to-end.

We present an extensive investigation into the effect of

incorporating the CF into the fully-convolutional Siamese

framework of Bertinetto et al. [3]. We find that the CF

does not improve results for networks that are sufficiently

deep. However, our method enables ultra-lightweight net-

works of a few thousand parameters to achieve state-of-the-

art performance on multiple benchmarks while running at

high framerates.

2. Related work

Since the seminal work of Bolme et al. [4], the Correla-

tion Filter has enjoyed great popularity within the tracking

community. Notable efforts have been devoted to its im-

provement, for example by mitigating the effect of periodic

boundaries [10, 15, 8], incorporating multi-resolution fea-

ture maps [21, 9] and augmenting the objective with a more

robust loss [26]. For the sake of simplicity, in this work we

adopt the basic formulation of the Correlation Filter.

Recently, several methods based on Siamese networks

have been introduced [28, 12, 3], raising interest in the

tracking community for their simplicity and competitive

performance. For our method, we prefer to build upon the

fully-convolutional Siamese architecture [3], as it enforces

the prior that the appearance similarity function should

commute with translation.

At its core, the Correlation Filter layer that we introduce

amounts to computing the solution to a regularized decon-

volution problem, not to be confused with upsampling con-

volution layers that are sometimes referred to as “decon-

volution layers” [20]. Before it became apparent that al-

gorithms such as SGD are sufficient for training deep net-

works, Zeiler et al. [34] introduced a deep architecture in

which each layer solves a convolutional sparse coding prob-

lem. In contrast, our problem has a closed-form solution

since the Correlation Filter employs quadratic regulariza-

tion rather than 1-norm regularization.

The idea of back-propagating gradients through the so-

lution to an optimization problem during training has been

previously investigated. Ionescu et al. [14] and Murray [24]

have presented back-propagation forms for the SVD and

Cholesky decomposition respectively, enabling gradient de-

scent to be applied to a network that computes the solu-

tion to either a system of linear equations or an eigenvalue

problem. Our work can be understood as an efficient back-

propagation procedure through the solution to a system of

linear equations, where the matrix has circulant structure.

When the solution to the optimization problem is ob-

tained iteratively, an alternative is to treat the iterations as a

Recurrent Neural Network, and to explicitly unroll a fixed

number of iterations [36]. Maclaurin et al. [23] go further

and back-propagate gradients through an entire SGD learn-

ing procedure, although this is computationally demanding

and requires judicious bookkeeping. Gould et al. [11] have

recently considered differentiating the solution to general

argmin problems without restricting themselves to itera-

tive procedures. However, these methods are unnecessary

in the case of the Correlation Filter, as it has a closed-form

solution.

Back-propagating through a learning algorithm invites a

comparison to meta-learning. Recent works [30, 1] have

proposed feed-forward architectures that can be interpreted

as learning algorithms, enabling optimization by gradient

descent. Rather than adopt an abstract definition of learn-

ing, this paper propagates gradients through a conventional

learning problem that is already widely used.
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3. Method

We briefly introduce a framework for learning embed-

dings with Siamese networks (Section 3.1) and the use of

such an embedding for object tracking (Section 3.2) before

presenting the CFNet architecture (Section 3.3). We sub-

sequently derive the expressions for evaluation and back-

propagation of the main new ingredient in our networks,

the Correlation Filter layer, which performs online learning

in the forward pass (Section 3.4).

3.1. Fully­convolutional Siamese networks

Our starting point is a network similar to that of [3],

which we later modify in order to allow the model to

be interpreted as a Correlation Filter tracker. The fully-

convolutional Siamese framework considers pairs (x′, z′)
comprising a training image x′ and a test image z′1. The im-

age x′ represents the object of interest (e.g. an image patch

centered on the target object in the first video frame), while

z′ is typically larger and represents the search area (e.g. the

next video frame).

Both inputs are processed by a CNN fρ with learnable

parameters ρ. This yields two feature maps, which are then

cross-correlated:

gρ(x
′, z′) = fρ(x

′) ⋆ fρ(z
′) . (1)

Eq. 1 amounts to performing an exhaustive search of the

pattern x′ over the test image z′. The goal is for the maxi-

mum value of the response map (left-hand side of eq. 1) to

correspond to the target location.

To achieve this goal, the network is trained offline with

millions of random pairs (x′
i, z

′
i) taken from a collection of

videos. Each example has a spatial map of labels ci with

values in {−1, 1}, with the true object location belonging to

the positive class and all others to the negative class. Train-

ing proceeds by minimizing an element-wise logistic loss ℓ
over the training set:

argmin
ρ

∑

i

ℓ (gρ(x
′
i, z

′
i), ci) . (2)

3.2. Tracking algorithm

The network itself only provides a function to measure

the similarity of two image patches. To apply this network

to object tracking, it is necessary to combine this with a

procedure that describes the logic of the tracker. Similar

to [3], we employ a simplistic tracking algorithm to assess

the utility of the similarity function.

Online tracking is performed by simply evaluating the

network in forward-mode. The feature representation of the

target object is compared to that of the search region, which

1Note that this differs from [3], in which the target object and search

area were instead denoted z and x respectively.

is obtained in each new frame by extracting a window cen-

tred at the previously estimated position, with an area that

is four times the size of the object. The new position of the

object is taken to be the location with the highest score.

The original fully-convolutional Siamese network sim-

ply compared every frame to the initial appearance of the

object. In contrast, we compute a new template in each

frame and then combine this with the previous template in

a moving average.

3.3. Correlation Filter networks

We propose to modify the baseline Siamese network of

eq. 1 with a Correlation Filter block between x and the

cross-correlation operator. The resulting architecture is il-

lustrated in Figure 1. This change can be formalized as:

hρ,s,b(x
′, z′) = s ω (fρ(x

′)) ⋆ fρ(z
′) + b (3)

The CF block w = ω(x) computes a standard CF template

w from the training feature map x = fρ(x
′) by solving a

ridge regression problem in the Fourier domain [13]. Its ef-

fect can be understood as crafting a discriminative template

that is robust against translations. It is necessary to intro-

duce scalar parameters s and b (scale and bias) to make the

score range suitable for logistic regression. Offline training

is then performed in the same way as for a Siamese network

(Section 3.1), replacing g with h in eq. 2.

We found that it was important to provide the Correla-

tion Filter with a large region of context in the training im-

age, which is consistent with the findings of Danelljan et

al. [8] and Kiani et al. [15]. To reduce the effect of circular

boundaries, the feature map x is pre-multiplied by a cosine

window [4] and the final template is cropped [29].

Notice that the forward pass of the architecture in Fig-

ure 1 corresponds exactly to the operation of a standard

CF tracker [13, 6, 22, 3] with CNN features, as proposed

in previous work [21, 7]. However, these earlier networks

were not trained end-to-end. The novelty is to compute the

derivative of the CF template with respect to its input so that

a network incorporating a CF can be trained end-to-end.

3.4. Correlation Filter

We now show how to back-propagate gradients through

the Correlation Filter solution efficiently and in closed form

via the Fourier domain.

Formulation. Given a scalar-valued image x ∈ R
m×m,

the Correlation Filter is the template w ∈ R
m×m whose in-

ner product with each circular shift of the image x ∗ δ−u is

as close as possible to a desired response y[u] [13], mini-

mizing

∑

u∈U

(〈x ∗ δ−u, w〉 − y[u])
2
= ‖w ⋆ x− y‖2 . (4)
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Figure 2: Internal computational graph for the Correlation

Filter. The boxes denote functions, which are defined in

eq. 7, and the circles denote variables.

Here, U = {0, . . . ,m − 1}2 is the domain of the image,

y ∈ R
m×m is a signal whose u-th element is y[u], and δτ

is the translated Dirac delta function δτ [t] = δ[t − τ ]. In

this section, we use ∗ to denote circular convolution and

⋆ to denote circular cross-correlation. Recall that convolu-

tion with the translated δ function is equivalent to transla-

tion (x ∗ δτ )[t] = x[t− τ mod m]. Incorporating quadratic

regularization to prevent overfitting, the problem is to find

argmin
w

1

2n
‖w ⋆ x− y‖2 +

λ

2
‖w‖2 (5)

where n = |U| is the effective number of examples.

The optimal template w must satisfy the system of equa-

tions (obtained via the Lagrangian dual, see Appendix C,

supplementary material)





k = 1

n
(x ⋆ x) + λδ

k ∗ α = 1

n
y

w = α ⋆ x

(6)

where k can be interpreted as the signal that defines a circu-

lant linear kernel matrix, and α is a signal comprised of the

Lagrange multipliers of a constrained optimization problem

that is equivalent to eq. 5. The solution to eq. 6 can be com-

puted efficiently in the Fourier domain [13],





k̂ = 1

n
(x̂∗ ◦ x̂) + λ✶

α̂ = 1

n
k̂−1 ◦ ŷ

ŵ = α̂∗ ◦ x̂

(7a)

(7b)

(7c)

where we use x̂ = Fx to denote the Discrete Fourier Trans-

form of a variable, x∗ to denote the complex conjugate, ◦ to

denote element-wise multiplication and ✶ to denote a sig-

nal of ones. The inverse of element-wise multiplication is

element-wise scalar inversion. Notice that the operations in

eq. 7 are more efficiently computed in the Fourier domain,

since they involve element-wise operations instead of more

expensive convolutions or matrix operators (eq. 6). More-

over, the inverse convolution problem (to find α such that

k ∗ α = 1

n
y) is the solution to a diagonal system of equa-

tions in the Fourier domain (eq. 7b).

Back-propagation. We adopt the notation that if x ∈
X = R

n is a variable in a computational graph that com-

putes a final scalar loss ℓ ∈ R, then ∇xℓ ∈ X denotes

the vector of partial derivatives (∇xℓ)i = ∂ℓ/∂xi. If

y ∈ Y = R
m is another variable in the graph, which is

computed directly from x according to y = f(x), then the

so-called back-propagation map for the function f is a lin-

ear map from ∇yℓ ∈ Y to ∇xℓ ∈ X .

Appendix D gives a tutorial review of the mathemati-

cal background. In short, the back-propagation map is the

linear map which is the adjoint of the differential. This

property was used by Ionescu et al. [14] to compute back-

propagation maps using matrix differential calculus. While

they used the matrix inner product 〈X,Y 〉 = tr(XTY ) to

find the adjoint, we use Parseval’s theorem, which states

that the Fourier transform is unitary (except for a scale fac-

tor) and therefore preserves inner products 〈x, y〉 ∝ 〈x̂, ŷ〉.
To find the linear map for back-propagation through the

Correlation Filter, we first take the differentials of the sys-

tem of equations in eq. 6 that defines the template w





dk = 1

n
(dx ⋆ x+ x ⋆ dx)

dk ∗ α+ k ∗ dα = 1

n
dy

dw = dα ⋆ x+ α ⋆ dx

(8)

and then take the Fourier transform of each equation and re-

arrange to give the differential of each dependent variable in

Figure 2 as a linear function (in the Fourier domain) of the

differentials of its input variables





d̂k = 1

n
(d̂x

∗

◦ x̂+ x̂∗ ◦ d̂x)

d̂α = k̂−1 ◦
[
1

n
d̂y − d̂k ◦ α̂

]

d̂w = d̂α
∗

◦ x̂+ α̂∗ ◦ d̂x .

(9a)

(9b)

(9c)

Note that while these are complex equations, that is simply

because they are the Fourier transforms of real equations.

The derivatives themselves are all computed with respect to

real variables.

The adjoints of these linear maps define the overall back-

propagation map from ∇wℓ to ∇xℓ and ∇yℓ. We defer the

derivation to Appendix B and present here the final result,





∇̂αℓ = x̂ ◦ (∇̂wℓ)
∗

∇̂yℓ =
1

n
k̂−∗ ◦ ∇̂αℓ

∇̂kℓ = −k̂−∗ ◦ α̂∗ ◦ ∇̂αℓ

∇̂xℓ = α̂ ◦ ∇̂wℓ+
2

n
x̂ ◦ Re{∇̂kℓ} .

(10)

It is necessary to compute forward Fourier transforms at

the start and inverse transforms at the end. The extension

to multi-channel images is trivial and given in Appendix E

(supplementary material).
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As an interesting aside, we remark that, since we have

the gradient of the loss with respect to the “desired” re-

sponse y, it is actually possible to optimize for this parame-

ter rather than specify it manually. However, in practice we

did not find learning this parameter to improve the track-

ing accuracy compared to the conventional choice of a fixed

Gaussian response [4, 13].

4. Experiments

The principal aim of our experiments is to investigate the

effect of incorporating the Correlation Filter during train-

ing. We first compare against the symmetric Siamese archi-

tecture of Bertinetto et al. [3]. We then compare the end-

to-end trained CFNet to a variant where the features are re-

placed with features that were trained for a different task.

Finally, we demonstrate that our method achieves state-of-

the-art results.

4.1. Evaluation criteria

Popular tracking benchmarks like VOT [16] and

OTB [32, 33] have made all ground truth annotations avail-

able and do not enforce a validation/test split. However, in

order to avoid overfitting to the test set in design choices and

hyperparameter selection, we consider OTB-2013, OTB-50

and OTB-100 as our test set and 129 videos from VOT-

2014, VOT-2016 and Temple-Color [19] as our validation

set, excluding any videos which were already assigned to

the test set. We perform all of our tracking experiments in

Sections 4.2, 4.3 and 4.4 on the validation set with the same

set of “natural” hyperparameters, which are reasonable for

all methods and not tuned for any particular method.

As in the OTB benchmark [32, 33], we quantify the per-

formance of the tracker on a sequence in terms of the av-

erage overlap (intersection over union) of the predicted and

ground truth rectangles in all frames. The success rate of

a tracker at a given threshold τ corresponds to the fraction

of frames in which the overlap with the ground truth is at

least τ . This is computed for a uniform range of 100 thresh-

olds between 0 and 1, effectively constructing the cumula-

tive distribution function. Trackers are compared using the

area under this curve.

Mimicking the TRE (Temporal Robustness Evaluation)

mode of OTB, we choose three equispaced points per se-

quence and run the tracker from each until the end. Differ-

ently from the OTB evaluation, when the target is lost (i.e.

the overlap with the ground truth becomes zero) the tracker

is terminated and an overlap of zero is reported for all re-

maining frames.

Despite the large number of videos, we still find that the

performance of similarity networks varies considerably as

training progresses. To mitigate this effect, we average the

final tracking results that are obtained using the parame-

ters of the network at epochs 55, 60, . . . , 95, 100 (the final
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Figure 3: Tracker accuracy for different network depths, on

the 129 videos of the validation set. Error bars indicate two

standard deviations. Refer to section 4.2 for more details.

All figures best viewed in colour.

epoch) to reduce the variance. These ten results are used to

estimate the standard deviation of the distribution of results,

providing error bars for most figures in this section. While

it would be preferable to train all networks to convergence

multiple times with different random seeds, this would re-

quire significantly more resources.

4.2. Comparison to Siamese baseline

Figures 3 and 4 compare the accuracy of both methods

on the validation set for networks of varying depth. The

feature extraction network of depth n is terminated after the

n-th linear layer, including the following ReLU but not the

following pooling layer (if any).

Our baseline diverges slightly from [3] in two ways.

Firstly, we reduce the total stride of the network from 8 to

4 (2 at conv1, 2 at pool1) to avoid training Correlation Fil-

ters with small feature maps. Secondly, we always restrict

the final layer to 32 output channels in order to preserve the

high speed of the method with larger feature maps. These

changes did not have a negative effect on the tracking per-

formance of SiamFC.

The results show that CFNet is significantly better than

the baseline when shallow networks are used to compute

features. Specifically, it brings a relative improvement of

31% and 13% for networks of depth one and two respec-

tively. At depths three, four and five, the difference is much

less meaningful. CFNet is relatively unaffected by the depth

of the network, whereas the performance of the baseline in-

creases steadily and significantly with depth. It seems that

the ability of the Correlation Filter to adapt the distance

metric to the content of the training image is less important

given a sufficiently expressive embedding function.

The CF layer can be understood to encode prior knowl-

edge of the test-time procedure. This prior may become

redundant or even overly restrictive when enough model ca-
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Figure 4: Success rates of rectangle overlap for individual trackers on the validation set. Solid and dotted lines represent

methods that update the template with a running average learning rate of 0.01 and 0, respectively.
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Figure 5: Accuracy of a Correlation Filter tracker when us-

ing features obtained via different methods. Error bars in-

dicate two standard deviations. Refer to Section 4.3 for de-

tails.

pacity and data are available. We believe this explains the

saturation of CFNet performance when more than two con-

volutional layers are used.

Figure 4 additionally shows that updating the template is

always helpful, for both Baseline and CFNet architectures,

at any depth.

4.3. Feature transfer experiment

The motivation for this work was the hypothesis that in-

corporating the CF during training will result in features that

are better suited to tracking with a CF. We now compare our

end-to-end trained CFNet to variants that use features from

alternative sources: Baseline+CF and ImageNet+CF. The

results are presented in Figure 5.

To obtain the curve Baseline+CF we trained a baseline

Siamese network of the desired depth and then combined

those features with a CF during tracking. Results show that

taking the CF into account during offline training is critical

at depth one and two. However, it seems redundant when

more convolutional layers are added, since using features

from the Baseline in conjunction with the CF achieves sim-
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Figure 6: Comparison of CFNet to a “constant” variant of

the architecture, in which the Lagrange multipliers do not

depend on the image (section 4.4). Error bars indicate two

standard deviations.

ilar performance.

The ImageNet+CF variant employs features taken from

a network trained to solve the ImageNet classification chal-

lenge [27]. The results show that these features, which are

often the first choice for combining CFs with CNNs [7, 9,

21, 25, 31, 35], are significantly worse than those learned by

CFNet and the Baseline experiment. The particularly poor

performance of these features at deeper layers is somewhat

unsurprising, since these layers are expected to have greater

invariance to position when trained for classification.

4.4. Importance of adaptation

For a multi-channel CF, each channel p of the template w
can be obtained as wp = α⋆xp, where α is itself a function

of the exemplar x (Appendix C, supplementary material).

To verify the importance of the online adaptation that solv-

ing a ridge regression problem at test time should provide,

we propose a “constant” version of the Correlation Filter

(CFNet-const) where the vector of Lagrange multipliers α
is instead a parameter of the network that is learned offline

and remains fixed at test time.
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OTB-2013 OTB-50 OTB-100

OPE TRE OPE TRE OPE TRE

Method speed (fps.) IoU prec. IoU prec. IoU prec. IoU prec. IoU prec. IoU prec.

CFNet-conv1 83 57.8 71.4 58.6 71.7 48.8 61.3 51.0 63.6 53.6 65.8 55.9 67.6

CFNet-conv2 75 61.1 74.6 64.0 77.9 53.0 66.0 56.5 70.2 56.8 69.3 60.6 73.2

Baseline+CF-conv3 67 61.0 74.8 63.1 76.8 53.8 66.5 57.4 70.8 58.9 71.1 61.1 73.4

CFNet-conv5 43 61.1 73.6 62.6 75.7 53.9 67.0 56.6 70.1 58.6 71.1 60.8 72.7

Baseline-conv5 52 61.8 75.3 64.0 77.3 51.7 64.1 56.1 69.1 58.8 71.4 61.6 73.7

SiamFC-3s [3] 60.7 73.5 61.8 75.0 51.6 63.9 55.5 69.2 58.2 70.2 60.5 72.8

Staple [2] 60.0 72.5 61.7 74.2 50.9 63.4 54.1 67.5 58.1 71.6 60.4 72.8

LCT [22] 61.2 78.0 59.4 74.2 49.2 62.5 49.5 61.7 56.2 69.2 56.9 68.2

SAMF [18] – – – – 46.2 60.7 51.4 65.6 53.9 69.0 57.7 71.4

DSST [6] 55.4 67.5 56.6 68.4 45.2 56.6 48.4 60.1 51.3 63.1 – –

Table 1: Perfomance as overlap (IoU) and precision produced by the OTB toolkit for the OTB-2013, OTB-50 and OTB-100

datasets. The first and second best results are highlighted in each column. For details refer to Section 4.5.

Figure 6 compares CFNet to its constant variant. CFNet

is consistently better, demonstrating that in order to improve

over the baseline Siamese network it is paramount to back-

propagate through the solution to the inverse convolution

problem that defines the Lagrange multipliers.

4.5. Comparison with the state­of­the­art

We use the OTB-2013/50/100 benchmarks to con-

firm that our results are on par with the state-of-the-

art. All numbers in this section are obtained using the

OTB toolkit [32]. We report the results for the three

best instantiations of CFNet from Figure 5 (CFNet-conv2,

CFNet-conv5, Baseline+CF-conv3), the best variant of the

baseline (Baseline-conv5) and the most promising single-

layer network (CFNet-conv1). We compare our methods

against state-of-the-art trackers that can operate in real-

time: SiamFC-3s [3], Staple [2] and LCT [22]. We also

include the recent SAMF [18] and DSST [6] for reference.

For the evaluation of this section, we use a different set of

tracking hyperparameters per architecture, chosen to maxi-

mize the performance on the validation set after a random

search of 300 iterations. More details are provided in the

supplementary material. For the few greyscale sequences

present in OTB, we re-train each architecture using exclu-

sively greyscale images.

Both overlap (IoU) and precision scores [33] are reported

for OPE (one pass) and TRE (temporal robustness) evalu-

ations. For OPE, the tracker is simply run once on each

sequence, from the start to the end. For TRE, the tracker

is instead started from twenty different starting points, and

run until the end from each. We observed that this ensures

more robust and reliable results compared to OPE.

Similarly to the analysis on the validation set, CFNet-

conv2 is among the top performers and its accuracy rivals

that of Baseline-conv5, which possesses approximately 30×
as many parameters. In general, our best proposed CFNet

variants are superior (albeit modestly) to the state-of-the-

 32

 34

 36

 38

 40

 42

 44

 46

 48

 50

 40  50  60  70  80  90  100  110

5 4 3
2

1

5
4

3

2

1

A
v
e

ra
g

e
 o

v
e

rl
a

p
 (

%
 I
O

U
)

Frames per second

Baseline
CFNet

Figure 7: Tracker accuracy versus speed for CFNet and

Siamese baseline. Labels indicate network depth. CFNet

enables better accuracy to be obtained at higher speeds us-

ing shallower networks. Error bars indicate two standard

deviations. Refer to section 4.6 for details.

art. In order to focus on the impact of our contribution, we

decided to avoid including orthogonal improvements which

can often be found in the tracking literature (e.g. bounding

box regression [25], ensembling of multiple cues [22, 2],

optical flow [28]).

4.6. Speed and practical benefits

The previous sections have demonstrated that there is a

clear benefit to integrating Correlation Filters into Siamese

networks when the feature extraction network is relatively

shallow. Shallow networks are practically advantageous in

that they require fewer operations and less memory to eval-

uate and store. To understand the trade-off, Figure 7 reports

the speed and accuracy of both CFNet and the baseline for
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varying network depth2.

This plot suggests that the two-layer CFNet could be the

most interesting variant for practitioners requiring an accu-

rate tracking algorithm that operates at high framerates. It

runs at 75 frames per second and has less than 4% of the pa-

rameters of the five-layer baseline, requiring only 600kB to

store. This may be of particular interest for embedded de-

vices with limited memory. In contrast, methods like Deep-

SRDCF [7] and C-COT [9], which use out-of-the-box deep

features for the Correlation Filter, run orders of magnitude

slower. Even the one-layer CFNet remains competitive de-

spite having less than 1% of the parameters of the five-layer

baseline and requiring under 100kB to store.

5. Conclusion

This work proposes the Correlation Filter network,

an asymmetric architecture that back-propagates gradients

through an online learning algorithm to optimize the under-

lying feature representation. This is made feasible by estab-

lishing an efficient back-propagation map for the solution to

a system of circulant equations.

Our empirical investigation reveals that, for a sufficiently

deep Siamese network, adding a Correlation Filter layer

does not significantly improve the tracking accuracy. We

believe this is testament to the power of deep learning given

sufficient training data. However, incorporating the Corre-

lation Filter into a similarity network during training does

enable shallow networks to rival their slower, deeper coun-

terparts.

Future research may include extensions to account

for adaptation over time, and back-propagating gradients

through learning problems for related tasks such as one-shot

learning and domain adaptation.

A. Implementation details

We follow the procedure of [3] to minimize the loss

(equation 2) through SGD, with the Xavier-improved pa-

rameters initialization and using mini-batches of size 8. We

use all the 3862 training videos of ImageNet Video [27],

containing more than 1 million annotated frames, with mul-

tiple objects per frame. Training is conducted for 100

epochs, each sampling approximately 12 pairs (x′
i, z

′
i) from

each video, randomly extracted so that they are at most 100

frames apart.

During tracking, a spatial cosine window is multiplied

with the score map to penalize large displacements. Track-

ing in scale space is achieved by evaluating the network at

the scale of the previous object and at one adjacent scale

on either side, with a geometric step of 1.04. Updating

the scale is discouraged by multiplying the responses of the

2The speed was measured using a 4.0GHz Intel i7 CPU and an NVIDIA

Titan X GPU.

scaled object by 0.97. To avoid abrupt transitions of object

size, scale is updated using a rolling average with learning

rate 0.6.

Code and results are available online 3.

B. Back-propagation for the Correlation Filter

As described in Appendix D (supplementary material),

the back-propagation map is the adjoint of the linear maps

that is the differential. These linear maps for the Correlation

Filter are presented in eq. 9. We are free to obtain these

adjoint maps in the Fourier domain since Parseval’s theorem

provides the preservation of inner products. Let J1 denote

the map dx 7→ dk in eq. 9a. Hence manipulation of the

inner product

〈Fdk, FJ1(dx)〉 =
〈
d̂k, 1

n
(d̂x

∗

◦ x̂+ x̂∗ ◦ d̂x)
〉

= 1

n

[
〈d̂x, d̂k

∗

◦ x̂〉+ 〈d̂k ◦ x̂, d̂x〉
]

=
〈
d̂x, 2

n
Re{d̂k} ◦ x̂

〉
(11)

gives the back-propagation map

∇̂xℓ =
2

n
x̂ ◦ Re{∇̂kℓ} . (12)

Similarly, for the linear map dk, dy 7→ dα in eq. 9b,

〈Fdα, FJ2(dk, dy)〉 =
〈
d̂α, k̂−1[ 1

n
d̂y − d̂k ◦ α̂]

〉

=
〈

1

n
k̂−∗ ◦ d̂α, d̂y

〉
+
〈
−k̂−∗ ◦ α̂∗ ◦ d̂α, d̂k

〉
, (13)

the back-propagation maps are

∇̂yℓ =
1

n
k̂−∗ ◦ ∇̂αℓ (14)

∇̂kℓ = −k̂−∗ ◦ α̂∗ ◦ ∇̂αℓ , (15)

and for the linear map dx, dα 7→ dw in eq. 9c,

〈Fdw, FJ3(dx, dα)〉 = 〈d̂w, d̂α
∗

◦ x̂+ α̂∗ ◦ d̂x〉

= 〈d̂α, d̂w
∗

◦ x̂〉+ 〈d̂w ◦ α̂, d̂x〉 , (16)

the back-propagation maps are

∇̂αℓ = x̂ ◦ (∇̂wℓ)
∗ , (17)

∇̂xℓ = α̂ ◦ ∇̂wℓ . (18)

The two expressions for ∇xℓ above are combined to give

the back-propagation map for the entire Correlation Filter

block in eq. 10.
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