
Learning Spatio-Temporal Transformer for Visual Tracking

Bin Yan1,∗, Houwen Peng2,†, Jianlong Fu2, Dong Wang1,†, Huchuan Lu1

1Dalian University of Technology 2Microsoft Research Asia

Abstract

In this paper, we present a new tracking architecture
with an encoder-decoder transformer as the key compo-
nent. The encoder models the global spatio-temporal fea-
ture dependencies between target objects and search re-
gions, while the decoder learns a query embedding to pre-
dict the spatial positions of the target objects. Our method
casts object tracking as a direct bounding box prediction
problem, without using any proposals or predefined an-
chors. With the encoder-decoder transformer, the predic-
tion of objects just uses a simple fully-convolutional net-
work, which estimates the corners of objects directly. The
whole method is end-to-end, does not need any postprocess-
ing steps such as cosine window and bounding box smooth-
ing, thus largely simplifying existing tracking pipelines. The
proposed tracker achieves state-of-the-art performance on
multiple challenging short-term and long-term benchmarks,
while running at real-time speed, being 6× faster than
Siam R-CNN [54]. Code and models are open-sourced at
https://github.com/researchmm/Stark.

1. Introduction

Visual object tracking is a fundamental yet challeng-
ing research topic in computer vision. Over the past few
years, based on convolutional neural networks, object track-
ing has achieved remarkable progress [28, 11, 54]. How-
ever, convolution kernels are not good at modeling long-
range dependencies of image contents and features, because
they only process a local neighborhood, either in space or
time. Current prevailing trackers, including both the offline
Siamese trackers and the online learning models, are almost
all built upon convolutional operations [2, 44, 3, 54]. As a
consequence, these methods only perform well on model-
ing local relationships of image content, but being limited
to capturing long-range global interactions. Such deficiency
may degrade the model capacities for dealing with the sce-
narios where the global contextual information is important

∗Work performed when Bin Yan was an intern of MSRA.
† Corresponding authors: Houwen Peng (houwen.peng@microsoft.com),
Dong Wang (wdice@dlut.edu.cn).

� �� �� �� �� ��
�����������

����

����

����

����

����

����

����

����

����

�
�
�
�
�
�
�

����������
���������

����������

������

���� ����

����� ��������
���

���������

�����������
����

���������

Figure 1: Comparison with state-of-the-arts on LaSOT [15]. We
visualize the Success performance with respect to the Frames-Per-
Seconds (fps) tracking speed. The circle size indicates a weighted
sum of the tracker’s speed (x-axis) and success score (y-axis). The
larger, the better. Ours-ST101 and Ours-ST50 indicate the pro-
posed trackers with ResNet-101 and ResNet-50 as backbones, re-
spectively. Better viewed in color.

for localization, such as the objects undergoing large-scale
variations or getting in and out of views frequently.

The problem of long-range interactions has been tackled
in sequence modeling through the use of transformer [53].
Transformer has enjoyed rich success in tasks such as
natural language modeling [13, 46] and speech recogni-
tion [40]. Recently, transformer has been employed in dis-
criminative computer vision models and drawn great atten-
tion [14, 5, 41]. Inspired by the recent DEtection TRans-
former (DETR) [5], we propose a new end-to-end tracking
architecture with encoder-decoder transformer to boost the
performance of conventional convolution models.

Both spatial and temporal information are important for
object tracking. The former one contains object appearance
information for target localization, while the latter one in-
cludes the state changes of objects across frames. Previous
Siamese trackers [28, 59, 16, 7] only exploit the spatial in-
formation for tracking, while online methods [63, 66, 11, 3]
use historical predictions for model updates. Although be-
ing successful, these methods do not explicitly model the
relationship between space and time. In this work, consider-
ing the superior capacity on modeling global dependencies,
we resort to transformer to integrate spatial and temporal

10448

graysoul

graysoul

graysoul

information for tracking, generating discriminative spatio-
temporal features for object localization.

More specifically, we propose a new spatio-temporal ar-
chitecture based on the encoder-decoder transformer for
visual tracking. The new architecture contains three key
components: an encoder, a decoder and a prediction head.
The encoder accepts inputs of an initial target object, the
current image, and a dynamically updated template. The
self-attention modules in the encoder learn the relation-
ship between the inputs through their feature dependencies.
Since the template images are updated throughout video se-
quences, the encoder can capture both spatial and tempo-
ral information of the target. The decoder learns a query
embedding to predict the spatial positions of the target ob-
ject. A corner-based prediction head is used to estimate
the bounding box of the target object in the current frame.
Meanwhile, a score head is learned to control the updates of
the dynamic template images.

Extensive experiments demonstrate that our method es-
tablishes new state-of-the-art performance on both short-
term [20, 43] and long-term tracking benchmarks [15, 25].
For instance, our spatio-temporal transformer tracker sur-
passes Siam R-CNN [54] by 3.9% (AO score) and 2.3%
(Success) on GOT-10K [20] and LaSOT [15], respectively.
It is also worth noting that compared with previous long-
term trackers [9, 54, 62], the framework of our method is
much simpler. Specifically, previous methods usually con-
sist of multiple components, such as base trackers [11, 57],
target verification modules [23], and global detectors [47,
21]. In contrast, our method only has a single network
learned in an end-to-end fashion. Moreover, our tracker can
run at real-time speed, being 6× faster than Siam R-CNN
(30 v.s. 5 fps) on a Tesla V100 GPU, as shown in Fig. 1

Considering recent trends of over-fitting on small-
scale benchmarks, we collect a new large-scale tracking
benchmark called NOTU, integrating all sequences from
NFS [24], OTB100 [58], TC128 [33], and UAV123 [42].

In summary, this work has four contributions.

• We propose a new transformer architecture dedicated
to visual tracking. It is capable of capturing global fea-
ture dependencies of both spatial and temporal infor-
mation in video sequences.

• The whole method is end-to-end, does not need
any postprocessing steps such as cosine window and
bounding box smoothing, thus largely simplifying ex-
isting tracking pipelines.

• The proposed trackers achieve state-of-the-art perfor-
mance on five challenging short-term and long-term
benchmarks, while running at real-time speed.

• We construct a new large-scale tracking benchmark to
alleviate the over-fitting problem on previous small-
scale datasets.

2. Related Work
Transformer in Language and Vision. Transformer

is originally proposed by Vaswani et al. [53] for machine
translation task, and has become a prevailing architecture in
language modeling. Transformer takes a sequence as the in-
put, scans through each element in the sequence and learns
their dependencies. This feature makes transformer be in-
trinsically good at capturing global information in sequen-
tial data. Recently, transformer has shown their great po-
tential in vision tasks like image classification [14], object
detection [5], semantic segmentation [56], multiple object
tracking [51, 41], etc. Our work is inspired by the recent
work DETR [5], but has following fundamental differences.
(1) The studied tasks are different. DETR is designed for
object detection, while this work is for object tracking. (2)
The network inputs are different. DETR takes the whole
image as the input, while our input is a triplet consisting of
one search region and two templates. Their features from
the backbone are first flattened and concatenated then sent
to the encoder. (3) The query design and training strate-
gies are different. DETR uses 100 object queries and uses
the Hungarian algorithm to match predictions with ground-
truths during training. In contrast, our method only uses one
query and always matches it with the ground-truth without
using the Hungarian algorithm. (4) The bounding box heads
are different. DETR uses a three-layer perceptron to pre-
dict boxes. Our network adopts a corner-based box head for
higher-quality localization.

Moreover, TransTrack [51] and TrackFormer [41] are
two most recent representative works on transformer track-
ing. TransTrack [51] has the following features. (1) The
encoder takes the image features of both the current and
the previous frame as the inputs. (2) It has two decoders,
which take the learned object queries and queries from the
last frame as the input respectively. With different queries,
the output sequence from the encoder is transformed into
detection boxes and tracking boxes respectively. (3) The
predicted two groups of boxes are matched based on the
IoUs using the Hungarian algorithm [27]. While Track-
former [41] has the following features. (1) It only takes the
current frame features as the encoder inputs. (2) There is
only one decoder, where the learned object queries and the
track queries from the last frame interact with each other.
(3) It associates tracks over time solely by attention opera-
tions, not relying on any additional matching such as mo-
tion or appearance modeling. In contrast, our work has the
following fundamental differences with these two methods.
(1) Network inputs are different. Our input is a triplet con-
sisting of the current search region, the initial template and
a dynamic template. (2) Our method captures the appear-
ance changes of the tracked targets by updating the dynamic
template, rather than updating object queries as [51, 41].

Spatio-Temporal Information Exploitation. Exploita-

10449

tion of spatial and temporal information is a core problem in
object tracking field. Existing trackers can be divided into
two classes: spatial-only ones and spatio-temporal ones.
Most of offline Siamese trackers [2, 29, 28, 69, 34] be-
long to the spatial-only ones, which consider the object
tracking as a template-matching between the initial tem-
plate and the current search region. To extract the rela-
tionship between the template and the search region along
the spatial dimension, most trackers adopt the variants of
correlation, including the naive correlation [2, 29], the
depth-wise correlation [28, 69], and the point-wise corre-
lation [34, 61]. Although achieving remarkable progress
in recent years, these methods merely capture local simi-
larity, while ignoring global information. By contrast, the
self-attention mechanism in transformer can capture long-
range relationship, making it suitable for pair-wise match-
ing tasks. Compared with spatial-only trackers, spatio-
temporal ones additionally exploit temporal information to
improve trackers’ robustness. These methods can also be
divided into two classes: gradient-based and gradient-free
ones. Gradient-based methods require gradient computa-
tion during inference. One of the classical works is MD-
Net [44], which updates domain-specific layers with gradi-
ent descent. To improve the optimization efficiency, later
works [11, 3, 30, 55, 64] adopt more advanced optimiza-
tion methods like Gauss-Newton method or meta-learning-
based update strategies. However, many real-world de-
vices for deploying deep learning do not support back-
propagation, which restricts the application of gradient-
based methods. In contrast, gradient-free methods have
larger potentials in real-world applications. One class of
gradient-free methods [63, 66] exploits an extra network to
update the template of Siamese trackers [2, 70]. Another
representative work LTMU [9] learns a meta-updater to pre-
dict whether the current state is reliable enough to be used
for the update in long-term tracking. Although being effec-
tive, these methods cause the separation between space and
time. In contrast, our method integrates the spatial and tem-
poral information as a whole, simultaneously learning them
with the transformer.

Tracking Pipeline and Post-processing. The tracking
pipelines of previous trackers [28, 59, 69, 54] are com-
plicated. Specifically, they first generate a large number
of box proposals with confidence scores, then use various
post-processing to choose the best bounding box as the
tracking result. The commonly used post-processing in-
cludes cosine window, scale or aspect-ratio penalty, bound-
ing box smoothing, tracklet-based dynamic programming,
etc. Though it brings better results, post-processing causes
the performance to be sensitive to hyper-parameters. There
are some trackers [18, 21] attempting to simplify the track-
ing pipeline, but their performances still lag far behind that
of state-of-the-art trackers. Recent books and surveys on

Backbone

Flatten and Concatenate

Transformer
Encoder

Transformer
Decoder

Bounding Box
prediction head

Target Query

Search Region

Initial
Template

Figure 2: Framework for spatial-only tracking.

object tracking can be found in [37, 31]. This work at-
tempts to close this gap, achieving top performance by pre-
dicting one single bounding box in each frame.

3. Method
In this section, we propose the spatio-temporal trans-

former network for visual tracking, called STARK. For
clarity, we first introduce a simple baseline method that di-
rectly applies the original encoder-decoder transformer for
tracking. The baseline method only considers spatial infor-
mation and achieves impressive performance. After that, we
extend the baseline to learn both spatial and temporal repre-
sentations for target localization. We introduce a dynamic
template and an update controller to capture the appearance
changes of target objects.

3.1. A Simple Baseline Based on Transformer

We present a simple baseline framework based on visual
transformer for object tracking. The network architecture is
demonstrated in Fig. 2. It mainly consists of three compo-
nents: a convolutional backbone, an encoder-decoder trans-
former, and a bounding box prediction head.

Backbone. Our method can use arbitrary convolutional
networks as the backbone for feature extraction. Without
loss of generality, we adopt the vanilla ResNet [17] as the
backbone. More concretely, except for removing the last
stage and fully-connected layers, there is no other change
for the original ResNet [17]. The input of the backbone is a
pair of images: a template image of the initial target object
z ∈ R3×Hz×Wz and a search region of the current frame
x ∈ R3×Hx×Wx . After passing through of the backbone,
the template z and the search image x are mapped to two
feature maps fz ∈ RC×Hz

s ×Wz
s and fx ∈ RC×Hx

s ×Wx
s .

Encoder. The feature maps output from the backbone
require pre-processing before feeding into the encoder. To
be specific, a bottleneck layer is first used to reduce the

10450

graysoul

graysoul
ResNet

graysoul

graysoul

graysoul

graysoul
next frame

graysoul

graysoul
updated
template

channel number from C to d. Then the feature maps are
flattened and concatenated along the spatial dimension, pro-
ducing a feature sequence with length of Hz

s
Wz

s + Hx

s
Wx

s
and dimension of d, which servers as the input for the
transformer encoder. The encoder consists of N encoder
layers, each of which is made up of a multi-head self-
attention module with a feed-forward network. Due to the
permutation-invariance of the original transformer [53], we
add sinusoidal positional embeddings to the input sequence.
The encoder captures the feature dependencies among all
elements in the sequence and reinforces the original features
with global contextual information, thus allowing the model
to learn discriminative features for object localization.

Decoder. The decoder takes a target query and the en-
hanced feature sequence from the encoder as the input.
Different from DETR [5] adopting 100 object queries, we
only input one single query into the decoder to predict one
bounding box of the target object. Besides, since there is
only one prediction, we remove the Hungarian algorithm
[27] used in DETR for prediction association. Similar to
the encoder, the decoder stacks M decoder layers, each of
which consists of a self-attention, an encoder-decoder atten-
tion, and a feed-forward network. In the encoder-decoder
attention module, the target query can attend to all positions
on the template and the search region features, thus learning
robust representations for the final bounding box prediction.

Head. DETR [5] adopts a three-layer perceptron to
predict object box coordinates. However, as pointed by
GFLoss [32], directly regressing the coordinates is equiv-
alent to fitting a Dirac delta distribution, which fails to con-
sider the ambiguity and uncertainty in the datasets. This
representation is not flexible and not robust to challenges
such as occlusion and cluttered background in object track-
ing. To improve the box estimation quality, we design a
new prediction head through estimating the probability dis-
tribution of the box corners. As shown in Fig. 3, we first
take the search region features from the encoder’s output
sequence, then compute the similarity between the search
region features and the output embedding from the decoder.
Next, the similarity scores are element-wisely multiplied
with the search region features to enhance important regions
and weaken the less discriminative ones. The new feature
sequence is reshaped to a feature map f ∈ Rd×Hs

s ×Ws
s , and

then fed into a simple fully-convolutional network (FCN).
The FCN consists of L stacked Conv-BN-ReLU layers and
outputs two probability maps Ptl(x, y) and Pbr(x, y) for
the top-left and the bottom-right corners of object bound-
ing boxes, respectively. Finally, the predicted box coordi-
nates (x̂tl, ŷtl) and (x̂br, ŷbr) are obtained by computing
the expectation of corners’ probability distribution as shown
in Eq. (2). Compared with DETR, our method explicitly
models uncertainty in the coordinate estimation, generating
more accurate and robust predictions for object tracking.

FCNs

Element-wise product

Encoder Output

Decoder output

Top-left
corner heatmap

Bottom-right
corner heatmap

Dot productDot product

Figure 3: Architecture of the box prediction head.

Training and Inference. Our baseline tracker is trained
in an end-to-end fashion with the combination of the ℓ1
Loss and the generalized IoU loss [48] as in DETR. The
loss function can be written as

L = λiouLiou(bi, b̂i) + λL1
L1(bi, b̂i). (1)

where bi and b̂i represent the groundtruth and the predicted
box respectively and λiou, λL1

∈ R are hyperparameters.
But unlike DETR, we do not use the classification loss and
the Hungarian algorithm, thus further simplifying the train-
ing process. During inference, the template image together
with its features from the backbone are initialized by the
first frame and fixed in the subsequent frames. During track-
ing, in each frame, the network takes a search region from
the current frame as the input, and returns the predicted box
as the final result, without using any post-processing such
as cosine window or bounding box smoothing.

(x̂tl, ŷtl) = (

H∑
y=0

W∑
x=0

x · Ptl(x, y),

H∑
y=0

W∑
x=0

y · Ptl(x, y)),

(x̂br, ŷbr) = (

H∑
y=0

W∑
x=0

x · Pbr(x, y),

H∑
y=0

W∑
x=0

y · Pbr(x, y)),

(2)

3.2. Spatio-Temporal Transformer Tracking
Since the appearance of a target object may change

significantly as time proceeds, it is important to capture
the latest state of the target for tracking. In this section,
we demonstrate how to exploit spatial and temporal infor-
mation simultaneously based on the previously introduced
baseline. Three key differences are made, including the net-
work inputs, an extra score head, and the training & infer-
ence strategy. We elaborate them one by one as below. The
spatio-temporal architecture is shown in Fig. 4.

Input. Different from the baseline method which only
uses the first and the current frames, the spatio-temporal
method introduces a dynamically updated template sampled
from intermediate frames as an additional input, as shown
in Fig. 4. Beyond the spatial information from the initial

10451

graysoul

template, the dynamic template can captures the target ap-
pearance changes with time, providing additional temporal
information. Similar to the baseline architecture in Sec. 3.1,
feature maps of the triplet are flattened and concatenated
then sent to the encoder. The encoder extracts discrimina-
tive spatio-temporal features by modeling the global rela-
tionships in both spatial and temporal dimensions.

Head. During tracking, there are some cases where
the dynamic template should not be updated. For exam-
ple, the cropped template is not reliable when the target
has been completely occluded or has moved out of view,
or when the tracker has drifted. For simplicity, we consider
that the dynamic template could be updated as long as the
search region contains the target. To automatically deter-
mine whether the current state is reliable, we add a simple
score prediction head, which is a three-layer perceptron fol-
lowed by a sigmoid activation. The current state is consid-
ered reliable if the score is higher than the threshold τ .

Training and Inference. As pointed out by recent
works [8, 50], jointly learning of localization and classifica-
tion may cause sub-optimal solutions for both tasks, and it
is helpful to decouple localization and classification. There-
fore, we divide the training process into two stages, regard-
ing the localization as a primary task and the classification
as a secondary task. To be specific, in the first stage, the
whole network, except for the score head, is trained end-to-
end only with the localization-related losses in Eq. 1. In this
stage, we ensure all search images to contain the target ob-
jects and let the model learn the localization capacity. In the
second stage, only the score head is optimized with binary
cross-entropy loss defined as

Lce = yilog (Pi) + (1− yi) log (1− Pi) , (3)

where yi is the groundtruth label and Pi is the predicted
confidence , and all other parameters are frozen to avoid af-
fecting the localization capacity. In this way, the final model
learn both localization and classification capabilities after
the two-stage training.

During inference, two templates and corresponding fea-
tures are initialized in the first frame. Then a search region
is cropped and fed into the network, generating one bound-
ing box and a confidence score. The dynamic template is
updated only when the update interval is reached and the
confidence score is higher than the threshold τ . For effi-
ciency, we set the update interval as Tu frames. The new
template is cropped from the original image and then fed
into the backbone for feature extraction.

4. Experiments
This section first presents the implementation details and

the results of our STARK tracker on multiple benchmarks,
with comparisons to state-of-the-art methods. Then, abla-
tion studies are presented to analyze the effects of the key

Backbone

Flatten and Concatenate

Transformer
Encoder

Transformer
Decoder

Bounding Box
prediction head

Target Query

Score head

Update

Template Cropping

Yes

Replace

Search Region

Initial
Template

Dynamic
Template

Figure 4: Framework for spatio-temporal tracking. The dif-
ferences with the spatial-only architecture are in pink.

components in the proposed networks. We also report the
results of other candidate frameworks and compare them
with our method to demonstrate its superiority. Finally, vi-
sualization on attention maps of the encoder and the decoder
are provided to understand how the transformer works.

4.1. Implementation Details

Our trackers are implemented using Python 3.6 and Py-
Torch 1.5.1. The experiments are conducted on a server
with 8 16GB Tesla V100 GPUs.

Model. We report the results of three variants of
STARK: STARK-S50, STARK-ST50 and STARK-ST101.
STARK-S50 only exploits spatial information and takes
ResNet-50 [17] as the backbone, i.e., the baseline tracker
presented in Sec. 3.1. STARK-ST50 and STARK-ST101
take ResNet-50 and ResNet-101 as the backbones respec-
tively, exploiting both spatial and temporal information, i.e.,
the spatio-temporal tracker presented in Sec. 3.2.

The backbones are initialized with the parameters pre-
trained on ImageNet. The BatchNorm [22] layers are frozen
during training. Backbone features are pooled from the
fourth stage with a stride of 16. The transformer architec-
ture is similar to that in DETR [5] with 6 encoder layers
and 6 decoder layers, which consist of multi-head attention
layers (MHA) and feed-forward networks (FFN). The MHA
have 8 heads, width 256, while the FFN have hidden units of
2048. Dropout ratio of 0.1 is used. The bounding box pre-
diction head is a lightweight FCN, consisting of 5 stacked
Conv-BN-ReLU layers. The classification head is a three-
layer perceptron with 256 hidden units in each layer.

Training. The training data consists of the train-splits of
LaSOT [15], GOT-10K [20], COCO2017 [35], and Track-
ingNet [43]. As required by VOT2019 challenge, we re-
move 1k forbidden sequences from GOT-10K training set.
The sizes of search images and templates are 320 × 320

10452

0.0 0.2 0.4 0.6 0.8 1.0
Overlap threshold

0

10

20

30

40

50

60

70

80

O
ve
rl
ap

P
re
ci
si
on

[%
]

Success

STARK-ST101 [67.1]

SiamRCNN [64.8]

PrDiMP50 [59.8]

LTMU [57.2]

DiMP50 [56.9]

Ocean [56.0]

SiamFCpp [54.3]

ATOM [51.5]

SiamRPNpp [49.6]

0.0 0.1 0.2 0.3 0.4 0.5
Location error threshold

0

10

20

30

40

50

60

70

80

D
is
ta
n
ce

P
re
ci
si
on

[%
]

NormalizedPrecision

STARK-ST101 [77.0]

SiamRCNN [72.2]

PrDiMP50 [68.8]

LTMU [66.5]

Ocean [65.1]

DiMP50 [65.0]

SiamFCpp [62.3]

ATOM [57.6]

SiamRPNpp [56.9]

Figure 5: Comparisons on LaSOT test set [15].

pixels and 128 × 128 pixels respectively, corresponding to
52 and 22 times of the target box area. Data augmenta-
tions, including horizontal flip and brightness jittering, are
used. The minimal training data unit for STARK-ST is
one triplet, consisting of two templates and one search im-
ages. The whole training process of STARK-ST consists
of two stages, which take 500 epochs for localization and
50 epochs for classification, respectively. Each epoch uses
6 × 104 triplets. The network is optimized using AdamW
optimizer [36] and weight decay 10−4. The loss weights
λL1 and λiou are set to 5 and 2 respectively. Each GPU
hosts 16 triplets, hence the mini-batch size is 128 triplets.
The initial learning rates of the backbone and the rest parts
are 10−5 and 10−4 respectively. The learning rate drops by
a factor of 10 after 400 epochs in the first stage and after 40
epochs in the second stage. The training setting of STARK-
S is almost the same as that of STARK-ST, except that (1)
the minimal training data unit of STARK-S is a template-
search pair; (2) the training process only has the first stage.

Inference. The dynamic template update interval Tu and
the confidence threshold τ are set to 200 frames and 0.5 by
default. The inference pipeline only contains a forward pass
and a coordinate transformation from the search region to
the original image, without any extra post-processing.
4.2. Comparisons on previous benchmarks

We compare our STARK with existing state-of-the-art
object trackers on three short-term benchmarks (GOT-10K,
TrackingNet and VOT2020) and two long-term benchmarks
(LaSOT and VOT2020-LT).

GOT-10K. GOT-10K [20] is a large-scale benchmark
covering a wide range of common challenges in object
tracking. GOT-10K requires trackers to only use the train-
ing set of GOT-10k for model learning. We follow this pol-
icy and retrain our models only with the GOT-10K train set.
As reported in Tab. 1, with the same ResNet-50 backbone,
STARK-S50 and STARK-ST50 outperform PrDiMP50 [12]
by 3.8% and 4.6% AO scores, respectively. Furthermore,
STARK-ST101 obtains a new state-of-the-art AO score of
68.8%, surpassing Siam R-CNN [54] by 3.9% with the
same ResNet-101 backbone.

TrackingNet. TrackingNet [43] is a large-scale short-
term tracking benchmark containing 511 video sequences in
the test set. Tab. 2 presents that STARK-S50 and STARK-
ST50 surpass PrDiMP50 [12] by 4.5% and 5.5% in AUC
respectively. With a more powerful ResNet-101 backbone,
STARK-ST101 achieves the best AUC of 82.0%, outper-
forming Siam R-CNN by 0.8%.

VOT2020. Different from previous reset-based evalu-
ations [26], VOT2020 [25] proposes a new anchor-based
evaluation protocol and uses binary segmentation masks as
the groundtruth. The final metric for ranking is the Ex-
pected Average Overlap (EAO). Tab. 3 shows that STARK-
S50 achieves a competitive result, which is better than
DiMP [3] and UPDT [4]. After introducing temporal in-
formation, STARK-ST50 obtains an EAO of 0.308, being
superior to previous bounding-box trackers. Inspired by Al-
phaRef [25], the winner of VOT2020 real-time challenge,
we equip STARK with a refinement module in AlphaRef to
generate segmentation masks. The new tracker “STARK-
ST50+AR” surpasses previous SOTA trackers, like Al-
phaRef and OceanPlus [69], getting an EAO of 0.505.

LaSOT. LaSOT [15] is a large-scale long-term tracking
benchmark, which contains 280 videos with average length
of 2448 frames in the test set. STARK-S50 and STARK-
ST50 achieve a gain of 6.0% and 6.6% over PrDiMP [12]
respectively, using the same ResNet-50 backbone. Further-
more, STARK-ST101 obtains a success of 67.1%, which is
2.3% higher than Siam R-CNN [54], as shown in Fig. 5.

VOT2020-LT. VOT2020-LT consists of 50 long videos,
in which target objects disappear and reappear frequently.
Besides, trackers are required to report the confidence score
of the target being present. Precision (Pr) and Recall (Re)
are computed under a series of confidence thresholds. F-
score, defined as F = 2PrRe

Pr+Re , is used to rank different
trackers. Since STARK-S does not predict this score, we do
not report its result on VOT2020-LT. Tab. 4 demonstrates
that STARK-ST50 and STARK-ST101 outperform all pre-
vious methods with an F-score of 70.2% and 70.1%, re-
spectively. It is also worth noting that the framework of
STARK is much simpler than that of LTMU B, the winner
of VOT2020-LT Challenge. To be specific, LTMU B takes
the combination of ATOM [11] and SiamMask [57] as the
short-term tracker, MDNet [44] as the verifier, and Global-
Track [21] as the global detector. Whereas there is only one
network in STARK and the result is obtained in one forward
pass without post-processing.

Speed, FLOPs and Params. As demonstrated in Tab. 6,
STARK-S50 can run in real-time at more than 40 fps. Be-
sides, the FLOPs and Params of STARK-S50 are 4× and
2× less than those of SiamRPN++. Although STARK-
ST50 takes a dynamic template as the extra input and in-
troduces an additional score head, the increases of FLOPs
and Params is a little, even negligible. This shows that our

10453

Table 1: Comparisons on GOT-10k test set [20].

SiamFC
[2]

SiamFCv2
[52]

ATOM
[11]

SiamFC++
[59]

D3S
[38]

DiMP50
[3]

Ocean
[69]

PrDiMP50
[12]

SiamRCNN
[54]

STARK
-S50

STARK
-ST50

STARK
-ST101

AO(%) 34.8 37.4 55.6 59.5 59.7 61.1 61.1 63.4 64.9 67.2 68.0 68.8
SR0.5(%) 35.3 40.4 63.4 69.5 67.6 71.7 72.1 73.8 72.8 76.1 77.7 78.1

SR0.75(%) 9.8 14.4 40.2 47.9 46.2 49.2 47.3 54.3 59.7 61.2 62.3 64.1

Table 2: Comparisons on TrackingNet test set [43].

DSiamRPN
[70]

ATOM
[11]

SiamRPN++
[28]

DiMP50
[3]

SiamAttn
[65]

SiamFC++
[59]

MAML-FCOS
[55]

PrDiMP50
[12]

SiamRCNN
[54]

STARK
-S50

STARK
-ST50

STARK
-ST101

AUC(%) 63.8 70.3 73.3 74.0 75.2 75.4 75.7 75.8 81.2 80.3 81.3 82.0
Pnorm(%) 73.3 77.1 80.0 80.1 81.7 80.0 82.2 81.6 85.4 85.1 86.1 86.9

Table 3: Comparisons on VOT2020 [25].“+AR” means using Alpha-Refine to predict masks. The upper row summarizes trackers that
only predict bounding boxes and the lower row presents trackers that report masks.

IVT
[49]

KCF
[19]

SiamFC
[2]

CSR-DCF
[39]

ATOM
[11]

DiMP
[3]

UPDT
[4]

DPMT SuperDiMP
[1]

STARK
-S50

STARK
-ST50

STARK
-ST101

EAO(↑) 0.092 0.154 0.179 0.193 0.271 0.274 0.278 0.303 0.305 0.280 0.308 0.303
Accuracy(↑) 0.345 0.407 0.418 0.406 0.462 0.457 0.465 0.492 0.477 0.477 0.478 0.481

Robustness(↑) 0.244 0.432 0.502 0.582 0.734 0.740 0.755 0.745 0.786 0.728 0.799 0.775
STM
[45]

SiamEM SiamMask
[57]

SiamMargin
[25]

Ocean
[69]

D3S
[38]

FastOcean AlphaRef
[25]

OceanPlus
[67]

STARK
-S50+AR

STARK
-ST50+AR

STARK
-ST101+AR

EAO(↑) 0.308 0.310 0.321 0.356 0.430 0.439 0.461 0.482 0.491 0.462 0.505 0.497
Accuracy(↑) 0.751 0.520 0.624 0.698 0.693 0.699 0.693 0.754 0.685 0.761 0.759 0.763

Robustness(↑) 0.574 0.743 0.648 0.640 0.754 0.769 0.803 0.777 0.842 0.749 0.817 0.789

method can exploit temporal information in a nearly cost-
free fashion. When ResNet-101 is used as the backbone,
both FLOPs and Params increase significantly but STARK-
ST101 can still run at real-time speed, which is 6x faster
than Siam R-CNN (5 fps), as shown in Fig. 1.
4.3. Comparisons on newly constructed benchmark

NOTU. In recent years, an obvious trend of over-fitting
has been observed on some small-scale tracking bench-
marks like OTB [58]. Performance on these datasets may
not accurately reflect the tracking ability of various trackers.
To address this issue, we collect a new large-scale tracking
benchmark called NOTU, which contains all 401 sequences
from NFS [24], OTB100 [58], TC-128 [33], and UAV-
123 [42]. Tab. 5 demonstrates that the rankings of trackers
on OTB100 are quite different from those on NOTU, ver-
ifying the over-fitting phenomenon we mentioned before.
Besides, STARK outperforms all previous trackers consis-
tently on NOTU, showing strong generalization ability.

4.4. Component-wise Analysis

In this section, we choose STARK-ST50 as the base
model and evaluate the effects of different components in it
on LaSOT [15]. For simplicity, encoder, decoder, positional
encoding, corner prediction, and score head are abbreviated
as enc, dec, pos, corner, and score respectively. As shown in
Tab. 7 #1, when the encoder is removed, the success drops
significantly by 5.3%. This illustrates that the deep interac-
tion among features from the template and the search region
plays a key role. The performance drops by 1.9% when the
decoder is removed as shown in #2. This drop is less than
that of removing the encoder, showing that the importance
of the decoder is less than the encoder. When the positional

encoding is removed, the performance only drops by 0.2%
as shown in #3. Thus we conclude that the positional en-
coding is not a key component in our method. We also try
to replace the corner head with a three-layer perceptron as
in DETR [5]. #4 shows that the performance of STARK
with an MLP as the box head is 2.7% lower than that of the
proposed corner head. It demonstrates that the boxes pre-
dicted by the corner head are more accurate. As shown in
#5, when removing the score head, the performance drops to
64.5%, which is lower than that of STARK-S50 without us-
ing temporal information. This demonstrates that improper
uses of temporal information may hurt the performance and
it is important to filter out unreliable templates.

4.5. Comparison with Other Frameworks
In this section, we choose the STARK-ST50 as our

base model and compare it with other possible candidate
frameworks. These frameworks include generating queries
from the template, using the Hungarian algorithm, updating
queries as in TrackFormer [41], and jointly learning local-
ization and classification. Due to the space limitation, the
figures of the detailed architectures are presented in the sup-
plementary material.

Template images serve as the queries. Queries and
templates have similar functions in transformer tracking.
For example, both of them are expected to encode informa-
tion about the target objects. From this view, a natural idea
is to use template images to serve as the queries of the de-
coder. Specifically, first, the template and the search region
features are separately fed to a weight-shared encoder then
the queries generated from the template features are used
to interact with the search region features in the decoder.
As shown in Tab. 8, the performance of this framework is

10454

Table 4: Comparisons on VOT-LT2020 benchmark [25].

SPLT [62] ltMDNet SiamDW LT [68] RLT DiMP CLGS Megtrack LTMU B [9] LT DSE STARK-ST50 STARK-ST101
F-score(%) 56.5 57.4 65.6 67.0 67.4 68.7 69.1 69.5 70.2 70.1

Pr(%) 58.7 64.9 67.8 65.7 73.9 70.3 70.1 71.5 71.0 70.2
Re(%) 54.4 51.4 63.5 68.4 61.9 67.1 68.1 67.7 69.5 70.1

Table 5: Success score (%) comparisons on the collected large-scale benchmark NOTU and its subsets [24, 58, 33, 42].

SiamFC
[2]

RT-MDNet
[23]

ECO
[10]

Ocean
[69]

LightTrack
[60]

SiamRPN++
[28]

ATOM
[11]

DiMP50
[3]

TransT
[6]

STARK-S50 STARK-ST50 STARK-ST101

NOTU 47.2 52.9 56.7 56.7 57.4 59.8 61.5 63.4 65.0 64.9 66.0 66.1
NFS 37.7 43.3 52.2 49.4 49.3 57.1 58.3 61.8 65.3 64.3 65.2 66.2

OTB100 58.3 65.0 66.6 68.4 65.4 68.7 66.3 68.4 69.5 68.3 68.5 68.1
TC128 48.9 56.3 58.9 55.7 55.0 57.7 59.9 61.2 59.6 60.0 62.6 63.1

UAV123 46.8 52.8 53.5 57.4 62.6 59.3 63.2 64.3 68.1 68.4 69.1 68.2

Table 6: Comparison about the speed, FLOPs and Params.

Trackers Speed(fps) FLOPs(G) Params(M)
STARK-S50 42.2 12.1 28.1

STARK-ST50 41.8 12.8 28.2
STARK-ST101 31.7 20.4 47.2

SiamRPN++ 35.0 48.9 54.0

Table 7: Ablation for important components. Blank denotes the
component is used by default, while ✗ represents the component
is removed. Performance is evaluated on LaSOT.

Enc Dec Pos Corner Score Success
1 ✗ 61.1
2 ✗ 64.5
3 ✗ 66.2
4 ✗ 63.7
5 ✗ 64.5
6 66.4

Table 8: Comparison between STARK and other candidate
frameworks. Performance is evaluated on LaSOT.

Template
query

Hungarian Update
query

Loc-Cls
Joint

Ours

Success 61.2 63.7 64.8 62.5 66.4

61.2%, which is 5.2% lower than that of our design. We
conjecture that the underlying reason is that compared with
our method, this design lacks the information flow from the
template to the search region, thus weakening the discrimi-
native power of the search region features.

Using the Hungarian algorithm [5]. We also try to use
K queries, predicting K boxes with confidence scores. K
is equal to 10 in the experiments. The groundtruth is dy-
namically matched with these queries during the training
using the Hungarian algorithm. We observe that this train-
ing strategy leads to the “Matthew effect”. There are only
one or two queries having the ability to predict high-quality
boxes. If they are not selected during inference, the pre-
dicted box may become unreliable. As shown in Tab. 8, this
strategy performs inferior to our method by 2.7%.

Updating the query embedding. Different from
STARK exploiting temporal information by introducing an

extra dynamic template, TrackFormer [41] encodes tempo-
ral information by updating the query embedding. Follow-
ing this idea, we extend the STARK-S50 to a new temporal
tracker by updating the target query. Tab. 8 shows that this
design achieves a success of 64.8%, which is 1.6% lower
than that of STARK-ST50. The underlying reason might
be that the extra information brought by an updatable query
embedding is much less than that by an extra template.

Jointly learning of localization and classification. As
mentioned in Sec 3.2, localization is regarded as the primary
task and is trained in the first stage. While classification is
trained in the second stage as the secondary task. We also
make an experiment to jointly learn localization and clas-
sification in one stage. As shown in Tab. 8, this strategy
leads to a sub-optimal result, which is 3.9% lower than that
of STARK. Two potential reasons are: (1) Optimization of
the score head interferes with the training of the box head,
leading to inaccurate box predictions. (2) Training of these
two tasks requires different data. To be specific, the local-
ization task expects that all search regions contain tracked
targets to provide strong supervision. By contrast, the clas-
sification task expects a balanced distribution, half of search
regions containing the targets, while the remaining half not.

5. Conclusion
This paper proposes a new transformer-based tracking

framework, which can capture the long-range dependency
in both spatial and temporal dimensions. Besides, the pro-
posed STARK tracker gets rid of hyper-parameters sensi-
tive post-processing, leading to a simple inference pipeline.
Extensive experiments show that the STARK trackers per-
form much better than previous methods on both exist-
ing short-term and long-term benchmarks and newly con-
structed NOTU benchmark, while running in real-time. We
expect this work can attract more attention on transformer
architecture for visual tracking.
Acknowledgement.

We would like to thank the reviewers for their insight-
ful comments. Lu and Wang are supported in part by Na-
tional Natural Science Foundation of China under grant No.
U1903215, 61725202, 61829102, 62022021 and Dalian In-
novation leader’s support Plan under Grant No. 2018RD07.

10455

References
[1] https://github.com/visionml/pytracking. 7
[2] Luca Bertinetto, Jack Valmadre, João F Henriques, Andrea

Vedaldi, and Philip H S Torr. Fully-convolutional siamese
networks for object tracking. In ECCVW, 2016. 1, 3, 7, 8

[3] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu
Timofte. Learning discriminative model prediction for track-
ing. In ICCV, 2019. 1, 3, 6, 7, 8

[4] Goutam Bhat, Joakim Johnander, Martin Danelljan, Fa-
had Shahbaz Khan, and Michael Felsberg. Unveiling the
power of deep tracking. In ECCV, 2018. 6, 7

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In ECCV, 2020. 1,
2, 4, 5, 7, 8

[6] Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun Yang,
and Huchuan Lu. Transformer tracking. In CVPR, 2021. 8

[7] Zedu Chen, Bineng Zhong, Guorong Li, Shengping Zhang,
and Rongrong Ji. Siamese box adaptive network for visual
tracking. In CVPR, 2020. 1

[8] Bowen Cheng, Yunchao Wei, Honghui Shi, Rogerio Feris,
Jinjun Xiong, and Thomas Huang. Revisiting rcnn: On
awakening the classification power of faster rcnn. In ECCV,
2018. 5

[9] Kenan Dai, Yunhua Zhang, Dong Wang, Jianhua Li,
Huchuan Lu, and Xiaoyun Yang. High-performance long-
term tracking with meta-updater. In CVPR, 2020. 2, 3, 8

[10] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and
Michael Felsberg. ECO: Efficient convolution operators for
tracking. In CVPR, 2017. 8

[11] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and
Michael Felsberg. ATOM: Accurate tracking by overlap
maximization. In CVPR, 2019. 1, 2, 3, 6, 7, 8

[12] Martin Danelljan, Luc Van Gool, and Radu Timofte. Prob-
abilistic regression for visual tracking. In CVPR, 2020. 6,
7

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. NAACL-HLT, 2019. 1

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1, 2

[15] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia
Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and Haibin Ling.
LaSOT: A high-quality benchmark for large-scale single ob-
ject tracking. In CVPR, 2019. 1, 2, 5, 6, 7

[16] Dongyan Guo, Jun Wang, Ying Cui, Zhenhua Wang, and
Shengyong Chen. SiamCAR: Siamese fully convolutional
classification and regression for visual tracking. In CVPR,
2020. 1

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 3, 5

[18] David Held, Sebastian Thrun, and Silvio Savarese. Learning
to track at 100 fps with deep regression networks. In ECCV,
2016. 3

[19] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge
Batista. High-speed tracking with kernelized correlation fil-
ters. In ICVS, 2008. 7

[20] Lianghua Huang, Xin Zhao, and Kaiqi Huang. GOT-10k: A
large high-diversity benchmark for generic object tracking in
the wild. TPAMI, 2019. 2, 5, 6, 7

[21] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Globaltrack:
A simple and strong baseline for long-term tracking. In
AAAI, 2020. 2, 3, 6

[22] Sergey Ioffe and Christian Szegedy. Batch Normalization:
Accelerating deep network training by reducing internal co-
variate shift. In ICML, 2015. 5

[23] Ilchae Jung, Jeany Son, Mooyeol Baek, and Bohyung Han.
Real-time MDNet. In ECCV, 2018. 2, 8

[24] Hamed Kiani Galoogahi, Ashton Fagg, Chen Huang, Deva
Ramanan, and Simon Lucey. Need for speed: A benchmark
for higher frame rate object tracking. In ICCV, 2017. 2, 7, 8

[25] Matej Kristan, Aleš Leonardis, Jiřı́ Matas, Michael Fels-
berg, Roman Pflugfelder, Joni-Kristian Kämäräinen, Martin
Danelljan, Luka Čehovin Zajc, Alan Lukežič, Ondrej Dr-
bohlav, et al. The eighth visual object tracking vot2020 chal-
lenge results. In ECCVW, 2020. 2, 6, 7, 8

[26] Matej Kristan, Jiri Matas, Ales Leonardis, et al. The sev-
enth visual object tracking VOT2019 challenge results. In
ICCVW, 2019. 6

[27] Harold W Kuhn. The hungarian method for the assignment
problem. Naval research logistics quarterly, 1955. 2, 4

[28] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing,
and Junjie Yan. SiamRPN++: Evolution of siamese visual
tracking with very deep networks. In CVPR, 2019. 1, 3, 7, 8

[29] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu.
High performance visual tracking with siamese region pro-
posal network. In CVPR, 2018. 3

[30] Peixia Li, Boyu Chen, Wanli Ouyang, Dong Wang, Xiaoyun
Yang, and Huchuan Lu. GradNet: Gradient-guided network
for visual object tracking. In ICCV, 2019. 3

[31] Peixia Li, Dong Wang, Lijun Wang, and Huchuan Lu. Deep
visual tracking: Review and experimental comparison. PR,
2018. 3

[32] Xiang Li, Wenhai Wang, Lijun Wu, Shuo Chen, Xiaolin Hu,
Jun Li, Jinhui Tang, and Jian Yang. Generalized focal loss:
Learning qualified and distributed bounding boxes for dense
object detection. In NeurIPS, 2020. 4

[33] Pengpeng Liang, Erik Blasch, and Haibin Ling. Encoding
color information for visual tracking: Algorithms and bench-
mark. TIP, 2015. 2, 7, 8

[34] Bingyan Liao, Chenye Wang, Yayun Wang, Yaonong Wang,
and Jun Yin. PG-Net: Pixel to global matching network for
visual tracking. 3

[35] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D.
Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft
COCO: Common objects in context. In ECCV, 2014. 5

10456

[36] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 6

[37] Huchuan Lu and Dong Wang. Online visual tracking.
Springer, 2019. 3

[38] Alan Lukezic, Jiri Matas, and Matej Kristan. D3S-a discrim-
inative single shot segmentation tracker. In CVPR, 2020. 7

[39] Alan Lukezic, Tomas Vojir, Luka ˇCehovin Zajc, Jiri Matas,
and Matej Kristan. Discriminative correlation filter with
channel and spatial reliability. In CVPR, 2017. 7

[40] Christoph Lüscher, Eugen Beck, Kazuki Irie, Markus Kitza,
Wilfried Michel, Albert Zeyer, Ralf Schlüter, and Hermann
Ney. Rwth asr systems for librispeech: Hybrid vs attention–
w/o data augmentation. arXiv preprint arXiv:1905.03072,
2019. 1

[41] Tim Meinhardt, Alexander Kirillov, Laura Leal-Taixe, and
Christoph Feichtenhofer. TrackFormer: Multi-object track-
ing with transformers. arXiv preprint arXiv:2101.02702,
2021. 1, 2, 7, 8

[42] Matthias Mueller, Neil Smith, and Bernard Ghanem. A
benchmark and simulator for uav tracking. In ECCV, 2016.
2, 7, 8

[43] Matthias Muller, Adel Bibi, Silvio Giancola, Salman Al-
subaihi, and Bernard Ghanem. Trackingnet: A large-scale
dataset and benchmark for object tracking in the wild. In
ECCV, 2018. 2, 5, 6, 7

[44] Hyeonseob Nam and Bohyung Han. Learning multi–domain
convolutional neural networks for visual tracking. In CVPR,
2016. 1, 3, 6

[45] Seoung Wug Oh, Joon-Young Lee, Ning Xu, and Seon Joo
Kim. Video object segmentation using space-time memory
networks. In ICCV, 2019. 7

[46] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are unsuper-
vised multitask learners. OpenAI blog, 1(8):9, 2019. 1

[47] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R–CNN: Towards real-time object detection with re-
gion proposal networks. In NIPS, 2015. 2

[48] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir
Sadeghian, Ian Reid, and Silvio Savarese. Generalized in-
tersection over union: A metric and a loss for bounding box
regression. In CVPR, 2019. 4

[49] David A Ross, Jongwoo Lim, Ruei-Sung Lin, and Ming-
Hsuan Yang. Incremental learning for robust visual tracking.
ijcv, 2008. 7

[50] Guanglu Song, Yu Liu, and Xiaogang Wang. Revisiting the
sibling head in object detector. In CVPR, 2020. 5

[51] Peize Sun, Yi Jiang, Rufeng Zhang, Enze Xie, Jinkun Cao,
Xinting Hu, Tao Kong, Zehuan Yuan, Changhu Wang, and
Ping Luo. TransTrack: Multiple-object tracking with trans-
former. arXiv preprint arXiv:2012.15460, 2020. 2

[52] Jack Valmadre, Luca Bertinetto, Joao Henriques, Andrea
Vedaldi, and Philip HS Torr. End-to-end representation
learning for correlation filter based tracking. In CVPR, 2017.
7

[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NIPS, 2017. 1, 2, 4

[54] Paul Voigtlaender, Jonathon Luiten, Philip HS Torr, and Bas-
tian Leibe. Siam R-CNN: Visual tracking by re-detection. In
CVPR, 2020. 1, 2, 3, 6, 7

[55] Guangting Wang, Chong Luo, Xiaoyan Sun, Zhiwei Xiong,
and Wenjun Zeng. Tracking by instance detection: A meta-
learning approach. In CVPR, 2020. 3, 7

[56] Huiyu Wang, Yukun Zhu, Hartwig Adam, Alan Yuille, and
Liang-Chieh Chen. MaX-DeepLab: End-to-end panop-
tic segmentation with mask transformers. arXiv preprint
arXiv:2012.00759, 2020. 2

[57] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and
Philip H. S. Torr. Fast online object tracking and segmenta-
tion: A unifying approach. In CVPR, 2019. 2, 6, 7

[58] Yi Wu, Jongwoo Lim, and Ming Hsuan Yang. Object track-
ing benchmark. TPAMI, 2015. 2, 7, 8

[59] Yinda Xu, Zeyu Wang, Zuoxin Li, Ye Yuan, and Gang Yu.
SiamFC++: towards robust and accurate visual tracking with
target estimation guidelines. In AAAI, 2020. 1, 3, 7

[60] Bin Yan, Houwen Peng, Kan Wu, Dong Wang, Jianlong Fu,
and Huchuan Lu. LightTrack: Finding lightweight neural
networks for object tracking via one-shot architecture search.
In ICCV, 2021. 8

[61] Bin Yan, Xinyu Zhang, Dong Wang, Huchuan Lu, and
Xiaoyun Yang. Alpha-refine: Boosting tracking perfor-
mance by precise bounding box estimation. arXiv preprint
arXiv:2012.06815, 2020. 3

[62] Bin Yan, Haojie Zhao, Dong Wang, Huchuan Lu, and Xi-
aoyun Yang. ‘Skimming-Perusal’ Tracking: A framework
for real-time and robust long-term tracking. In ICCV, 2019.
2, 8

[63] Tianyu Yang and Antoni B Chan. Learning dynamic memory
networks for object tracking. In ECCV, 2018. 1, 3

[64] Tianyu Yang, Pengfei Xu, Runbo Hu, Hua Chai, and An-
toni B Chan. ROAM: Recurrently optimizing tracking
model. In CVPR, 2020. 3

[65] Yuechen Yu, Yilei Xiong, Weilin Huang, and Matthew R
Scott. Deformable siamese attention networks for visual ob-
ject tracking. In CVPR, 2020. 7

[66] Lichao Zhang, Abel Gonzalez-Garcia, Joost van de Weijer,
Martin Danelljan, and Fahad Shahbaz Khan. Learning the
model update for siamese trackers. In ICCV, 2019. 1, 3

[67] Zhipeng Zhang, Bing Li, Weiming Hu, and Houweng Peng.
Towards accurate pixel-wise object tracking by attention re-
trieval. arXiv preprint arXiv:2008.02745, 2020. 7

[68] Zhipeng Zhang and Houwen Peng. Deeper and wider
siamese networks for real-time visual tracking. In CVPR,
2019. 8

[69] Zhipeng Zhang, Houwen Peng, Jianlong Fu, Bing Li, and
Weiming Hu. Ocean: Object-aware anchor-free tracking. In
ECCV, 2020. 3, 6, 7, 8

[70] Zheng Zhu, Qiang Wang, Bo Li, Wei Wu, Junjie Yan, and
Weiming Hu. Distractor-aware siamese networks for visual
object tracking. In ECCV, 2018. 3, 7

10457

