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Çağatay Candan

Properly Handling Complex Differentiation  
in Optimization and Approximation Problems

Functions of complex variables arise 
frequently in the formulation of sig -
nal processing problems. The basic 

calculus rules on differentiation and inte-
gration for functions of complex variables 
resemble, but are not identical to, the rules 
of their real variable counterparts. On the 
contrary, the standard calculus rules on 
differentiation, integration, series expan-
sion, and so on are the special cases of 
the complex analysis with the restriction 
of the complex variable to the real line. 
The goal of this lecture note is to review 
the fundamentals of the functions of com-
plex variables, highlight the differences 
and similarities with their real variable 
counterparts, and study the complex dif-
ferentiation operation with the optimi-
zation and approximation applications in 
mind. More specifically, the take-home 
result of this lecture note is to understand 
the differentiation with respect to the 
conjugate variable ( / ) ( , ),z f z z2 2r r  which 
is known as Wirtinger calculus, and its 
application in optimization and approxi-
mation problems.

Relevance
Complex analysis is a rich and interest-
ing topic with close ties to the founda-
tion of our profession. To illustrate its 
foundational nature, it is important to 
remember that the independent variable 
of a transfer function, e.g., ( )H s  or ( ),H z  
is a complex variable. Hence, the transfer 
function, a concept at the core of many 
signal processing operations, is nothing 
but a mapping via the function of a com-
plex variable. In the early days of sig-
nal processing, in the late 1970s to early 
1980s, an electrical engineering curriculum 
could not be considered “good” without 

a mandatory course on complex analy-
sis where differentiable functions, Taylor/
Laurent series, contour integration, and 
residue calculation, were presented in 
some depth to an undergraduate audi-
ence. With the progress of time, the atten-
tion of undergraduate students has been 
directed elsewhere, and topics of complex 
calculus have been eliminated from most 
undergraduate curricula. Today, with the 
exception of a very few students, even top 
graduate students do not know why the 
standard partial-fraction expansion meth-
od is called the residue method. Addi-
tionally, they are unable to explain the 
equality of ,sin x x dx 1r r =

3

3

-
^ ^h h#  

i.e., the area under sinc function, without 
reverting to the infamous duality property 
of the Fourier transform. Furthermore, 
they cannot discriminate between the 
removable singularity of sin z zr r^ ^h h at 
z 0=  and the pole of /z1  at .z 0=   This 
article is prepared not to present a remedy 
to all mentioned issues but to provide an 
overview of the most basic rules for com-
plex-valued optimization/approximation 
by differentiation, which is essential for 
many signal processing applications. We 
also provide several pointers for the read-
ers that wish further explore the topics of 
complex analysis on their own.

Prerequisites
The only prerequisites are the working 
knowledge of freshman calculus, basic 
signal processing theory, and some expo-
sure to the signal processing applications 
to develop some feeling on the application 
range of the presented ideas.

Problem statement and solution

Problem statement
We consider functions in the form ( )f z  
where z x jy= +  is a complex-valued 

scalar and j 1= -  is the imaginary 
unit, x and y are real scalars, which are 
called the real and imaginary parts of the 
complex number z, respectively. With the 
well-known definitions for the complex 
multiplication and addition, the field of 
complex numbers C is constructed. The 
mapping from z C!  to ( )w f z C!=  is 
verbally described as a complex-valued 
function of a complex variable.

Freshman calculus allows us to deter-
mine the optima of many problems by 
differentiation. Students are introduced 
to calculus as early as possible because of 
its importance and wide range of appli-
cation in nearly all fields of science and 
engineering. Yet, the functions of complex 
variables, differentiation operation, and 
utilization of differentiation in the opti-
mization and approximation problems 
with complex variables are not studied 
in a typical engineering curriculum. In 
some cases, the extension from stan-
dard calculus to complex calculus can 
be straightforward; however, in others, 
the process can be seen as tricky to an 
inexperienced eye.

Let ( ) .f z z x y
2 2 2_ = +  Since func-

tion ( )f z  is a quadratic function of real 
variables x and y, one may be tempted 
to say that ( )f z  is a differentiable func-
tion of z considering its quadratic nature. 
This assumption would indeed be cor-
rect if the function x y2 2+  is consider-
ed a function of two independent “real” 
variables x and y; however, it would not 
correct for a complex variable, z. Yet, 
functions known as analytic functions, 
such as ( ) ( )sinf x x=  or ( ) ,f x x2=  es -
sentially carry all of the properties (e.g., 
differentiation, integration, and continu-
ity) studied for their real-valued counter-
parts with the replacement of x with z, 
along with the replacement of real arith-
metic with complex arithmetic.
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The main problem studied here is 
the optimization and  approximation 
of the functions of complex  variables. 
We show that differentiation with res -
pect to ,zr  the complex conjugate of z, 
i.e., ( , ),z f z z2 2r r  instead of real and 
imaginary parts of ,z x jy= +  simpli-
fies writing equations, their interpre-
tation, and reduces the di  mension of 
the problem. To clarify the meaning of 

( , ),z f z z2 2r r  we first need to establish 
some understanding of the complex dif-
ferentiation operation.

Solution
The function ( )f z  can be expressed as

 ( ) ( , ) ( , ),f z u x y jv x yz x jy = += +  (1)

where ( , )u x y  and ( , )v x y  are ordinary 
functions of two real variables. Hence, 
by juxtaposing arbitrary functions of 
two real variables with the imaginary  
unit ,j  e.g., / ,x y, ( , )xy v x y( , )u x y 2 2 3= =

9 9  
we can establ ish a mapping f rom 
z C!  to ( )f z C!  in the form ( )f z = 

( , ) ( , ).u x y jv x y+

The conjugate of the variable z = 
x jy+  is defined as .z x jy= -r  With this 
definition, the real and imaginary parts 
of z can be expressed as

 , .x z z y
j

z z
2 2

= + = -r r  (2)

It is possible interpret the transforma-
tion from ( , )x y  to ( , )z zr  and vice versa, 
given by (2), as a change of variables for 
two independent variables. Hence, the 
mapping ( ) ( , ) ( , )f x jy u x y jv x y+ = +  
can be written with the alternate vari-
ables of ,z zr  as
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Careful readers must have noticed the 
notational abuse of using ( ) ( )f z f x jy= +  
and ( , )f z zr  for the same mapping. Note that 
the function ( )f z  is a function of two real 
variables that are the real and imaginary 
parts of z, but the notation of ( )f z  hides this 
dependence. The dependence on two vari-
ables is explicit in the equivalent definition 
of ( , ).f z zr  We ask the reader to tolerate this 
minor abuse of notation, which is basically 
required to simplify the presentation.

Functions differentiable at z = z0
A complex-valued function is said to be 
differentiable at z z0=  if the complex-
valued limit operation, shown in (4) at the 
bottom of the page, exists. 

Here, jz x yT TT = +  and zT  ap  -
proaches zero, i.e.,  0z "D  should be in -
terpreted as .0z x y

2 2 "T TT = +  The 
limit exists if the limit value is indepen-
dent of the direction where zT  approach-
es zero. For example, if zT  approaches 
zero on the real axis, i.e., 0x "T  and 

,0yT =  we have
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(5)

Similarly, if zT  approaches zero on 
the imaginary axis, i.e., 0xT =  and 

,0y "T  we have
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(6)

For the existence of the limit in (4), 
the right-hand sides of (5) and (6) should 
be identical. Equating (5) and (6), we get 
the Cauchy–Riemann conditions for the 
differentiability at  z z0=
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(7)

As an exercise, we suggest that read-
ers evaluate the limit for an arbitrary ap -
proach direction of [ ]x y

Ta a  by taking 
( )j h z x yT a a= +  and evaluating the li     mit 

in (4) as .h 0"  If the Cauchy–Riemann 
conditions hold, i.e., the special cases of 
the general approach direction for 0xa =  
or ,0ya =  the limit value is the same for 
all of the approach directions. Hence, the 
Cauchy–Riemann conditions are not only 
necessary but also sufficient for the exis-
tence of the limit defining the complex 
differentiation operation.

With the alternate representation of 
the function ( )f z  in the form ( , ),f z zr  
instead of ( ),f x jy+  the partial deriva-
tives with respect to z and zr  can be for-
mally written as
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(8)

where the coordinate change relations 
in (2) are utilized for the partial deriva-
tives of x and y with respect to z and .zr  
The expressions in (8) are first given by 
Wirtinger [1], and the calculus with z and 
zr  is called the Wirtinger calculus in some 
texts [2]. This concludes the definition for 

( , ),z f z z2 2r r  a result of pivotal impor-
tance in the simplification of approxi-
mation and optimization problems with 
complex variables.

As a first application of ( , ),z f z z2 2r r  
we take a second look at the Cauchy–Rie-
mann equations. For the compactness of 
notation, we denote the partial derivative 
of ( ) ( , ) ( , )f z u x y jv x y= +  with respect 
to x and y as f f x u jvx x x2 2= = +  
and ,f f y u jvy y y2 2= = +  respective-
ly. With the substitution of fx  and fy  
into (8), we get

 ( , ) ( ) .
z
f z z u v j v u

2
1

x y x y2
2 = - + +
r

r " ,  
 (9)

Please note that, for the  functions 
satisfying the Cauchy–Riemann con-
ditions, as given in (7), the right-hand 
side of (9) reduces to zero. Hence, differ-
entiability at a point requires the  formal 
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derivative of ( , )f z zr  with respect to zr  
vanish at that point. This simpler-to-
state-and-remember condition is equiv-
alent to the Cauchy–Riemann condi  tions. 
To highlight the differences with the real-
valued calculus, we note that differentia-
tion with respect to the conjugate variable 
has no counterpart in standard calculus.

Differentiability in a region requires 
( , )f z zr  to be independent of zr  in that 

region. Stated differently, ( , )f z zr  should 
be solely a function of z, i.e., should not 
exhibit any dependence on  zr  for differ-
entiability in that region. For example, 

( )f z z2=  is differentiable throughout 
the complex plane since ( )f z z2=  is in -
dependent of zr  throughout the complex 
plane. The function ( )f z z zz

2
= = r  with 

the partial derivative ( , ) zz f z z2 2 =r r  is 
only differentiable when .z 0=  Yet, the 
same function, ,z x y

2 2 2= +  is a dif-
ferentiable function of real variables x 
and y in the standard calculus sense. We 
suggest that readers keep this example in 
mind during the discussions of differen-
tiation with complex/real variables.

As it is evident from the aforemen-
tioned ( )f z z

2
=  discussion, the com-

plex differentiation operation is much 
more restrictive than differentiation for 
real variables. This is, in essence, due 
to the complex multiplication definition 
that results in an unavoidable interaction 
between the real and imaginary parts 
of a complex-valued function. Addition-
ally, in stark contrast to the real-valued 
functions, if ( )f z  is differentiable once 
in a neighborhood of ,z z0=  the func-
tion is infinitely differentiable in the same 
neighborhood [3, Sec. 52]. Hence, unlike 
standard calculus results, the Cauchy– 
Riemann conditions are not only the gate 
to the first derivative, but also to the sec-
ond and all higher-order derivatives.

Analytic functions 
A function of a complex variable z is said 
to be an analytic function in a domain 
if the function is differentiable for all 
points of that domain. Differentiabil-
ity and analyticity should be considered 
pointwise and neighborhood properties 
of a function, respectively. Hence, rather 
confusingly, ( )f z z

2
=  is differentiable 

only at ,z 0=  but is not analytic at any 
point. Analyticity of functions is espe-

cially important for the contour integration 
(path integration) in the complex plane [3, 
Sec. 50]. We do not delve into integration 
at all in these notes, yet we bring the ana-
lyticity definition to the attention of read-
ers to underscore that differentiability and 
analyticity are not synonymous for func-
tions of complex variables.

In the next section, we examine the 
application of complex differentiation in 
the optimization and approximation prob-
lems with some illustrative examples. We 
examine two classes, i.e., real-valued func-
tions of complex variables and complex-
valued functions of complex variables.

Application examples

Case 1: Real-valued functions of 
complex variables
This case studies the functions in the 
form ( ) ( , ),f z u x y=  i.e., the functions 

( ) ( , ) ( , )f z u x y jv x yz x jy = += +  with a 
vanishing imaginary part. Such func-
tions are called real-valued functions of 
complex variables. It should be clear that 
these functions do not satisfy the Cau-
chy–Riemann conditions, unless ( )f z  
is a constant function, i.e., .f z K=^ h  
From an applications viewpoint, the 
cost functions associated with the opti-
mization problems are in this form. An 
example is the least-squares problem 
with ( ) ,J z Az b

2
= -  where A is an 

N K#  matrix ( )N K2  with complex-
valued entries and vectors b CN!  and 

.z CK!  The function ( )J z  can be con-
sidered to be mapping from CK  to .R

A legitimate, but inefficient way to 
solve such optimization problems is 
to reduce the problem to the optimi-
zation of real variables. For example, 

( )J z Az b
2

= -  can be wr it ten as 
shown in (10) at the bottom of the page.

Here, x x xR
T2 =  and x x xH2 =  

denote the vector norms for real- and 
complex-valued vectors, respectively. 
With the introduced definitions, it is 
easy to see that ( ) ( ( ), ( )),Re ImJ Jz z z=  
allowing for some notational abuse.

In principle, the optimization prob-
lem given by (10) can be solved without 
any use of complex-valued operations at 
the expense of doubling the dimension 
of the problem, i.e., by solving N2  equa-
tions of K2  real unknowns instead of N  
equations with K  complex unknowns. 
We illustrate the optimization of ( )f z  
by using complex differentiation rules—
which reduces the amount of equation 
writing and solving—with two examples. 
The first one is a bare-bones application 
of presented ideas given to illustrate the 
essentials of the procedure. The second 
one shows the application of the men-
tioned ideas in a filter design problem.

Example 1: A simple optimization problem 
The problem is to find the point on the cir-
cle shown in Figure 1 such that the sum of 
its coordinates is minimum. As an appli-
cation motivation, in many sparse signal 
reconstruction applications, 1,  norm of 
the unknown vector is minimized under 
a constraint, which is typically an under-
determined linear equation system. Our 
problem is somewhat similar to these 
problems yet differs in the constraint. The 
circle in Figure 1 is centered at (2, 3) and 
has a radius of .2  The problem can be 
expressed as the minimization of the cost 
function ( , )J x y x y= +  under the con-
straint ( ) ( ) .x y2 3 22 2- + - =

We can use the Lagrange multiplier 
approach to convert the constrained opti-
mization problem to an unconstrained one
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where ( , , )L x y m  is the Lagrangian func-
tion and m  is the unknown Lagrange mul-
tiplier. By taking derivatives with respect 
to , ,x y  and m  and equating them to 0, we 
get the following equation system:

 ( , , ) ( ) ,
x
L x y x1 2 2 0

2
2

m m= + - =  
 (12a)
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( , , )

( ) ( ) .

L x y

x y2 3 2 02 2

2
2
m

m

= - + - - =
 
(12c)

Solving for x  and y  from (12a) 
and (12b), we get / ( )x 2 1 2m= -  and 

/ ( ) .y 3 1 2m= -  Inserting these expres-
sions into (12c), we get { . , . }.0 5 0 5m = -  
Hence, we find the possible solutions as 
(1, 2) and (3, 4). Among these extrema, 
the cost is minimized by the point (1, 2), 
which is indicated with the green dia-
mond marker in Figure 1. The value of 
the minimum cost is ( , ) .J 1 2 3=

Figure 1 also shows constant cost 
curves (level curves), ( , ) ,J x y c=  for the 
cost function ( , ) .J x y x y= +  It is seen 
in Figure 1, that as the value of ( , )J x y  
increases, the level curve “approaches” 
the circle. From this observation, it 
should be clear that the cost value for 
which the level curve is tangent to the 
circle is an extremum of the problem. 
Hence, the optimization problem can 
be solved geometrically by finding the 
points on the circle whose tangent line 
has the slope of −1. Of course, the solu-
tion by this geometric approach coin-
cides with our earlier findings, i.e., the 
points of (1, 2) and (3, 4).

Now, we tackle the same problem by 
transforming it to the complex domain. 
First, we introduce z x jy= +  to re -
duce the problem to the one with a 
single, complex unknown. By substitut-

ing ( ) (( ) / )Rex z z z 2= = + r  and y = 
( ) (( ) )/Im z z z j2= - r  into (11), we get
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where .z j2 30 _ +  Please note that the 
optimization problem is identical to the 
earlier one, given by (11). Hence, we 
expect the Lagrange multiplier m  to turn 
out to be { . , . }0 5 0 5m = -  and the final 
solution to be z j1 2= +  at the end. The 
only difference is that the optimization 
is over z  and ,zr  instead of ( , ).x y

By taking formal partial derivatives 
with respect to ,z  ,zr  and ,m  we get

( ) ,z z 0m+ - =( , , )
z
L z z

j2
1

2
1

02
2

m = +r r r

 (14a)

( ) ,z z 0m - =+( , , )
z
L z z

j2
1

2
1

02
2

m = -
r

r

 (14b)

 ( , , ) .L z z z z 2 00
2

2
2
m

m = - - =r  
 (14c)

As before, we need to solve for ,z  ,zr  
and m  from (14). The critical observa-
tion is that the left-hand sides of (14a) 
and (14b) are complex conjugates of 
each other and the right-hand sides of 
these equations are zero. Hence, if the 

first equation is satisfied by a particular 
,z  then the second equation is automati-

cally satisfied, and vice versa. Typically, 
readers with experience in these calcula-
tions prefer to write only one of these two 
equations, which is the partial derivative 
with respect to conjugate variable  zr  since 
the other equation is redundant. The dif-
ferentiation with respect to zr  has no real-
valued calculus counterpart, thus possibly 
confusing the inexperienced eye.

Referring back to the problem, from 
(14b), we can immediately get z = 

.z j1 20 m- +^ ^h h  As before, the La -
grange multiplier m  can be found by 
substituting this relation into (14c). Once 
this is done, we get { . , . },0 5 0 5m = -  and 
the extremum are at ( )z z j10 "= + =

{ , },j j1 2 3 4+ +  which coincides with 
our earlier findings.

The relation of conjugacy of the 
first two equations in (14), i.e., Lz2 2  
( , , ) , , ,( )z z z L z z2 2m m=r r r  is not limited 
to the examined problem but applies to all 
real-valued objective functions of complex 
variables. This claim can immediately be 
verified by substituting ( ) ( , )f z u x y=  
into (8).

As a single sentence take-away note, 
we can assert the following: the conju-
gacy relation between partial derivatives 
with respect to z  and zr  eases the calcu-
lation of the derivative, simplifies the 
presentation, and enables the solution of 
the optimization problem at the halved 
dimension of real-valued optimization.

Example 2: Magnitude-only least-
squares filter design 
The problem is to design a finite im pulse- 
response filter whose frequency response 
approximates a desired magnitude res -
ponse. Figure 2 shows the desired band- 
pass characteristic and the best least-
squares approximation of the desired 
characteristic with a 16-coefficient filter. 
The filter is designed with the method 
described in this example. Note that the 
desired response in Figure 2 is not an 
even function of frequency; hence, the fil-
ter coefficients of this design are complex 
valued. The main goal of this example is 
to illustrate the optimization of complex-
valued filter coefficients.

Let us denote the impulse response 
of the filter with [ ], { , , }h n n N0 1f= -  
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FIGURE 1. Example 1: Finding the point on the circle with the minimum coordinate sum. 
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and its Fourier transform, i.e., the fre-
quency response of the system, as 

.( ) [ ]H e n ehj
n

N j n
0

1
=~ ~

=

- -/  The design 
specifications for this problem are given 
only for the magnitude response, 
i.e., there are no restrictions on the 
phase response. Our goal is to set N  
complex-valued coefficients such that 

( )H e j
2~  approximates the desired 

characteristic ( )H ed
j 2~  in the least-

squares sense.
Consider that the magnitude square of 

( )H e j~  is also called the energy spectral 
density. This definition is only valid for 
the finite energy signals and is analyti-
cally expressed as .( ) ( )R e H eh

j j 2
=~ ~  

With this definition, the least-squares 
filter design problem with the magnitude 
response specification can be expressed as
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Here, the functions ( )R eh
j~  and 

( )R ed
j~  are the designed and desired 

energy spectral density functions, 
respectively.

The energy spectral density function 
for [ ]h n  can be written as
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w h e r e  [ ] [ ] [ ]r k h n h n kh n
= -

3

3

=-
r/  

is the deterministic autocorrelation for 
the impulse-response sequence. Given 
that the autocorrelation sequence com-
pletely determines the energy spec-
tral density function, the filter design 
problem can be decomposed into two 
stages: the least-squares design of the 
autocorrelation sequence and the filter 
impulse response construction from 
the designed autocorrelation sequence. 
First, we focus on the autocorrelation 
sequence design.

A valid autocorrelation sequence 
must satisfy the conjugate-symmetry 
property, also known as the Hermi-
tian symmetry property ,  which is 

[ ] [ ] .r k r kh h= -r  Hence, for a valid auto-

correlation sequence, [ ]r 0h  is real val-
ued and [ ]r kh  is the complex conjugate 
of [ ]r kh -  for .k 0!  It should be noted 
that the Hermitian symmetry condi-
tion is just a necessary condition for the 
validity of the autocorrelation sequence. 
The necessary and sufficient condition 
is the nonnegativeness of its Fourier 
transform, i.e., the nonnegativeness of 
its energy spectral density or the posi-
tive definiteness of the autocorrelation 
sequence. From (16), the energy spectral 
density function can be written as
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Considering the Hermitian symmetry 
property of [ ],r kh  the first summation 
in (17) is the complex conjugate of the 
second summation, ( ) ( ) .S e S ejw jw

1 2=  
To utilize the results of vector calcu-
lus, we prefer to rewrite ( )S e jw1  as an 
inner product
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where e T
~ e ev ( )j j j N2 1f= ~ ~ ~- - - - @6  

and [ ] [ ] [ ] .r r r N1 2 1r h h h
Tf= -6 @  

With this definition, ( ),R eh
j~  given in 

(17), can be formulated as
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Our goal is the design of an autocor-
relation sequence such that the discrete-
time Fourier transform of the sequence 
approximates the desired energy spec-
tral density ( )R ed

j~  in ( , ] .!~ r r-  We 
can express the condition of ( )R eh

j .~  
( )R ed

j~  for densely populated frequency 
points of { , , , } ( , ]L1 2 f !~ ~ ~ ~ r r= -  
as follows:

Normalized Frequency = ω /(2π )
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FIGURE 2. Example 2: The magnitude-only least-squares filter design. (a) The least-squares approxi-
mation to the desired magnitude response and (b) filter impulse response.



122 IEEE SIgnal ProcESSIng MagazInE   |   March 2019   |

 

( )
( )

( )

[ ]

( )
( )

( )

.

R e
R e

R e

r

R e
R e

R e

1
1

1

0

v
v

v

r

v
v

v

r

h
j

h
j

h
j

h

T

T

T

T

T

T

d
j

d
j

d
j

R 1 A

R

L
L

L
L

1

2

1

2

1

2

1

2

h

d

h h h

h h
.

= +

+

~

~

~

~

~

~

~

~

~

~

~

~

J

L

K
K
K
KK

N

P

O
O
O
OO

R

T

S
S
S
S
S

R

T

S
S
S
SS

R

T

S
S
S
S
S

R

T

S
S
S
S
S

R

T

S
S
S
S
S

V

X

W
W
W
W
W

V

X

W
W
W
WW

V

X

W
W
W
W
W

V

X

W
W
W
W
W

V

X

W
W
W
W
W

1 2 344 44

1 2 344 44

6 :
 

 

(20)

The equation system in (20) is nothing 
but the expression of ( ) ( )R e R eh

j
d

j.~ ~  
for all of the points in the frequency grid 
and can be compactly written in the vec-
tor-matrix form as follows.

 [ ] .r 01R Ar A Rrhh d.= + + r r  (21)

We can denote the approximation 
error vector as R Rh d-  and form the least-
squares cost function for the approxima-
tion as follows:
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For the minimization of the cost 
function, the partial derivatives with 
respect to the real and imaginary parts 
of [ ], { , , }r n n N0 1h f= -  should van-
ish. We prefer to evaluate the derivatives 
with respect to [ ]r nh  and its conjugate 

[ ] .r nhr  Note that the cost function in (22) 
explicitly includes the unknown autocor-
relation values and their conjugates. Con-
sidering that =x x xR

T2
 for real-valued 

,x  the cost function can be expanded as
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(23)

Since [ ]r 0h  is a real value, the partial 
derivative of J with respect to [ ]r 0h  easily 
follows from the standard calculus rules 
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In (24), the equality of (a) is due to 
the product rule for differentiation. The 
equality (b) stems from the fact that [ ]r 0h  
is the coefficient of an all-ones vector 
(the vector of )1  in the expression for u in 
(23). The equalities of (c) and (d) simply 
follow from the definition of u. By equat-
ing (24) to zero, we get the optimality 
condition for [ ] .r 0h

Next, we evaluate the gradient of 
the cost function with respect to rr  to get 
the optimality conditions of [ ]r khr  for 

.k 0!  The gradient operator is defined 
as / [ ] / [ ] /r r r1 2h h hrd 2 2 2 2 2 2g_ r r rr ^ ^ ^h h6  
[ ] .N 1 T- h@  The gradient of the cost func-
tion is then
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(25)

In (25), the equality of (a) follows from 
the product rule for differentiation. On the 
right side of (a), the second term appears 
as transposed. This is because the gradi-
ent vector is defined as a column vector, 
and with the transpose operator on 
the second component, we have the ad -
dition of two column vectors. Also, 

urdr  operation refers the calculation of 
the gradient for each entry of the vector 

;u  hence, urdr  is the Jacobian matrix for 
the vector .u  The equality (b) stems from 
the fact that ,uT  defined in (23), contains 
a term r AT Tr r  and .{ }r A AT

rd =T Tr r rr  The 
equality (c) is due to the Hermitian opera-
tion definition, i.e., .A AH T= r  Finally, by 
equating (25) to an all-zero vector, we get 
the optimality conditions for the variation 
of [ ]r khr  for .k 0!

The optimality conditions for the va -
riation of [ ]r kh  for k 0!  can also be 
derived by calculating the gradient with 
respect to [ ],r kh  which is a procedure 
very similar to the one given in (25).  
Since the cost function is a real-valued 
function of complex variables, we can 
avoid this calculation, as in Example 1. 
As discussed before, this feature of the 
cost function leads to the fact that the par-
tial derivatives with respect to the variable 

and its conjugate are complex conjugates 
of each other, .J Jr rd d= r^ h  Using this 
fact, the optimality condition of [ ]r kh  for 
k 0!  can be immediately written from 
the conditions for the conjugate variable
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By combining the optimality con-
ditions for [ ], [ ],r r k0h h  and [ ]r khr  and 
equating the partial derivatives given by 
(24)–(26) to zero, we get the following 
linear equation system:
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(27)

The solution of the equation system in 
(27) gives the optimal design for the auto-
correlation sequence in the least-squares 
sense. The best least-squares approxima-
tion to the desired energy spectral density 
is illustrated for a 16-coefficient filter in 
Figure 2. As can be seen from the top 
panel of Figure 2, the approximation is 
nonnegative valued, i.e., it satisfies the 
necessary and sufficient condition on 
a valid autocorrelation sequence. The 
design suffers from oscillatory behavior 
which, in general, is typical for the least-
squares problems.

In the second stage, the filter impulse 
response is calculated from its auto-
correlation sequence. Since [ ]r kh = 

[ ] [ ],h n h n k
n

-
3

3

=-
r/  the impulse-res-

ponse [ ]h n  can be retrieved from its 
autocorrelation via spectral factorization, 
[4]. The spectral factorization result 
for a minimum-phase [ ]h n  is shown in 
Figure 2. We do not provide any more 
details on the implementation of the 
spectral factorization operation, which 
uses somewhat more advanced topics in 
the theory of complex-valued functions 
but interested readers can examine and 
experiment with ready-to-use MATLAB 
code given in [5] for more information.

Examples 1 and 2 are given to illus-
trate the application of Wirtinger cal-
culus in the optimization problems. 
Wirtinger calculus can also be utilized 
in the Taylor series expansion, i.e., in 
the approximation problems involving 
functions of complex variables.
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Taylor series expansion of  
real-valued functions of  
complex variables 
In many applications, nonlinear relations 
involving complex variables are approxi-
mated around a suitable operating point 
with a few terms of Taylor series expan-
sion. Such approximations are not only 
inevitable in the numerical optimization 
routines but also important in theoretical 
developments, such as the Cramer–Rao 
bound calculations, the maximum-like-
lihood estimation of parameters, and 
so on.

We illustrate the expansion process 
with the 2)|z( ) ( |logf z 1= -  function. 
First, we express f(z) as a function of z  
and , ( , ) ( ) .logz f z z zz1= -r r r  Treating 
z  and zr  as independent variables and 
expanding the function of two variables 
into the Taylor series, we get
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(28)

where h.o.t  refers to the higher-order 
terms of the Taylor series expansion. 
The functions (·)f  with the subscript of 
z  or zr  appearing at the gradient vector 
and Hessian matrix in (28) denote the 
evaluation of gradient and Hessian at 
the operating point of .z z0=  For exam-
ple, fzzr  refers to the numerical value of 

, .ff z z z zzz
2

0 02 2 2= rrr ^ h
We now see the structure imposed 

by real-valued functions of complex 
variables on the gradient vector and the 
Hessian matrix in (28). The first and 
second elements of the gradient vec-
tor are conjugates of each other, since 

.f fz z= r  (Note that this is only valid 
for the real-valued ( )f z  functions.) An 
approximation of keeping the first two 
terms of (28), i.e., constant and linear 
terms, result in a real-valued function, 
as expected.

To determine the structure of the 
Hessian matrix in (28), we rewrite the 
fundamental relations in (8) with the 
operator notation as
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where operators of Dz  and Dzr  are 
 formally defined as ( / ) (( / )D x1 2z 2 2=

/( ))j y2 2-  a nd ( / ) (( / )D x1 2z 2 2=r
/( )).j y2 2+  With the operator defini-

tions, partial derivatives for all of the 
orders can be written as
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In passing to the rightmost equality 
of (30), the outer curly brackets in the 
middle term are removed due to the com-
mutativity of the operators Dz  and .Dzr  
Also considering the fact that ,D Dz z= r  
we reach the following conclusions for 
the entries of Hessian matrix: f fzz zz= rr  
and .f fzz zz=r r  Hence, the Hessian matrix 
in (28) can be characterized as a cen-
tro-Hermitian symmetric matrix. This 
concludes our discussion on optimiza-
tion and approximation by the Taylor 
series for real-valued functions of com-
plex variables.

As an example, the Taylor series 
ex  pansion of 2),|z-( ) ( |logf z 1=  o r 
equivalently ( , ) ( )logf z z zz1= -r r  at 

/ ,z j 20 =  can be written as

 

f( ) ,

/
/

/
/

/
/

f z
j j

j j
z j
z j

z j
z j

z j
z j

2 2

2
2
2

2
1 2

2
2
4

4
2

2
2

h.o.t. 

T

=
-

+ -
-

+

+
-

+ -

- -

+

+

r

r r

c m

;

6 ;

; ;E

@ E

E E

 
 

(31)

The explicit expressions for the par-
tial derivatives are
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The first- and second-order deriva-
tives obey the symmetry relations f fz z= rr  
and , ,f f f fzz zz zz zz= =rr r rr  as anticipated.

Case 2: Complex-valued functions  
of complex variables
Complex-valued functions from z C!  
to ( ) ,f z C!  such as ( ) ,f z z2=  cannot be 
utilized for optimization purposes due to 
the basic fact that complex numbers can-
not be ordered. Stated differently, j1 +  
cannot be compared with ;j2 3+  only 
the magnitude of complex numbers can 
be compared, as in .| | | |j j2 3 12+ +  In 
signal processing, complex-valued func-
tions establish mappings between com-
plex-valued entities, such as the mapping 
between filter coefficients and pole/zero 
locations. In this section, we focus on the 
Taylor series-based approximations for 
such functions.

Complex-valued nonanalytic functions 
Lattice filters are known to have certain 
implementation advantages over classi-
cal structures, such as robustness to the 
coefficient quantization errors, order-
recursive structure, and ease of stability 
check, and so on [4]. Assuming an all-
pole filter with the transfer function of 

( ) / ( ),H z a z a z a z1 1 1
1

2
2

3
3= + + +- - -  

which is implemented with the reflec-
tion coefficients , , ,1 2 3C C C  the mapping 
between filter coefficients and reflection 
coefficients, known as step-up recursion, 
can be written as follows [4, p. 234]:
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(32)

Here, ( )a $  is a complex-valued vector 
function of complex variables. The sec-
ond entry of this vector-valued function, 

( , , ) ,a2 1 2 3 2 3 1 3 1 2_C C C C C C C C C+ +r r  
is readily expressed in terms of the reflec-
tion coefficients and their conjugates. 
Considering our earlier discussions on 
the Cauchy–Riemann conditions, we can 
immediately note that the function (·)a2  
is not an analytic function in the complex 
analysis sense because of its dependence 
on the conjugate variables. The lack of ana-
lyticity property is not critically important 
in many signal processing applications, 
except the ones involving path integration, 
i.e., the residue calculus. Here, we focus on 
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the Taylor series expansion of nonanalytic 
functions such as (·) .a2

The partial derivative of (·)a2  with 
respect to 2Cr  is ,( / )a2 2 3 12 2C C C=r  a 
fact that can be immediately verified  
upon inspection of (32). Unlike the 
real-valued functions of complex vari-
ables previously examined, the partial 
derivative with respect to a variable 
and its conjugate do not carry informa-
tion about each other for the complex-
valued functions. Continuing with this 
current example, the derivative of 

(·)a2  with respect to 2C  can be not -
ed as ( ) ,/a 12 22 2C =  which is clearly 
not exhibiting any connections with 
( ) ./a2 2 3 12 2C C C=r  In summary, the 
Taylor series expansion of complex-
valued functions can be written in the 
form given in (28), with the difference 
that there is no structure in the gradient 
and Hessian terms for such expansions.

Complex-valued analytic functions
If the complex-valued function (·)f  is 
analytic, then, as previously noted, the 
function solely depends on z  but not on 
its conjugate zr  in a domain. For such 
functions, the Taylor series, as in (28), 
can be greatly simplified. Because the 
derivatives involving conjugate variable 
zr  simply vanish, ( )f z  can be expanded 
into the Taylor series as a function of the 
single, independent complex variable
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Both (28) and (33) are Taylor series 
expansions for a function of a single, com-
plex variable. Yet, they are very different 
from each other in appearance because of 
the difference in their analyticity proper-
ties. This situation may potentially con-
fuse a novice researcher. 

Nearly all of the elementary func-
tions of real-valued calculus such as 

, ( ), ( ),sin expx x xk  and so on can be 
extended to the complex plane by 
replacing the real-valued x  variable 
with a complex-valued .z  This simple 
substitution has important consequenc-
es. Extended (i.e., analytically contin-
ued) functions in the complex plane 

attain several important features, such 
as infinite-order differentiation, closed 
contour integration via residue calcu-
lus, and many more. Looking from a 
broader perspective, we can consider 
the elementary functions of real vari-
ables as the functions with pruned fea-
tures because of the domain restriction 
on the real line.

For more information on analytic 
functions and other topics, the book by 
Churchill and Brown [3] is the standard 
applied mathematics textbook on com-
plex variables. With its approachable 
style, without sacrificing rigor, this book 
is highly recommended for all readers. 
Along with the Churchill’s book, inter-
ested readers can also check the online 
lecture notes of Terence Tao on complex 
analysis [6]. Readers interested in the 
history of complex analysis will certain-
ly enjoy the informative tour of all the 
major topics of complex analysis guid-
ed by P. Nahin [7]. Readers with more 
knowledge on the topics should definite-
ly make time to watch V. Balakrishnan’s 
lectures on complex analysis [8]. Finally, 
complex differentiation and other related 
issues discussed in these notes are the 
basic tools of the research area known 
as widely linear estimation theory. For 
research applications, readers can con-
sult [2], [9], and [10].

What we have learned
We have studied the definition of com-
plex differentiation and its implications 
in optimization and approximation prob-
lems. We have seen that a real-valued 
function of complex variables, which is 
basically a cost function, can be opti-
mized with a reduced effort at halved 
dimension of real-valued optimization by 
complex differentiation with respect to 
the conjugate variable .zr  We have stud-
ied approximation by the Taylor series 
and noted certain differences for analytic 
and nonanalytic functions. Most of the 
elementary functions of standard calcu-
lus remain as analytic functions with the 
replacement of x  with the complex vari-
able .z  For analytic functions, the Taylor 
series expansion for real variables and 
complex variables are identical in form; 
however, this is not the case in general.
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