Problem (25 pts)

The norm function of a real-valued N-dimensional vector space is given as $||x||_W = \sqrt{x^T W x}$.

- a) What are the conditions (if any) on matrix $oldsymbol{W}$ for the norm definition to be valid?
- b) Assume x vector is 2×1 vector with entries x_1 and x_2 . The units of x_1 and x_2 are centimeters and meters, respectively. Can you suggest a matrix W such that $\|x\|_W$ has the unit of meters?
- Find the expression for x that minimizes $J(x) = \|Ax b\|_W^2$ where A is a full column rank