EE 503 Quiz 4 Conducted in Final Exam week (Duration: 15 minutes)

1. (Quiz #4, 15 minutes) The random vector \mathbf{x} has the following correlation matrix:

$\mathbf{R}_x =$	4	1	0	0	
	1	4	0	0	
	0	0	2	1	•
	0	0	1	2	
				-	

- a) Find the basis vectors for the KL transform associated with the given auto-correlation matrix.
- b) Assume that the random vector \mathbf{x} is approximated by projecting the vector \mathbf{x} to a 1-dimensional subspace. Find the sub-space with the minimum mean square approximation error $E\{||\mathbf{x} \hat{\mathbf{x}}||^2\}$ where $\hat{\mathbf{x}} = \mathbf{P}_{\mathbf{u}}\mathbf{x}$ and $\mathbf{P}_{\mathbf{u}}$ is the orthogonal projector to \mathbf{u} .
- c) What is the total MSE $E\{||\mathbf{x} \hat{\mathbf{x}}||^2\}$ of the approximation with the optimal \mathbf{u} ?

$$FE 503 \qquad [Full 2020-2]$$

$$\begin{array}{c} Poils 4\\ (conducted in Re final's work) \end{array}$$

$$\begin{array}{c} Problem:\\ \mathbb{P}_{x} = \begin{bmatrix} 4 & 1 & 0 \\ 1 & 4 & 2 \\ \hline 0 & 1 & 2 \\ \hline 1 & 2$$

b) From KL trunsformation rowth the fixed spare should be
spanned by the eigenvector with largest eigenvalue.
Then
$$U = \begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}$$
; $P_U = \underbrace{UU^T}_{||U||^2} = \frac{1}{2} \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix} \begin{bmatrix} 11 & 00 \end{bmatrix}_{=\frac{1}{2}} \begin{bmatrix} 11\\ 0\\ 0 \end{bmatrix} \begin{bmatrix} 11\\ 0\\ 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 11\\ 0\\ 0\\ 0 \end{bmatrix} \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix} \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix}$
(c) Assume x is expansed in truns z) the eigen verthers of
Rx, that is $x = \langle x, e^n_1 \rangle e^n_1 + \langle x, e^n_2 \rangle e^n_2 + \langle x, e^n_3 \rangle e^n_3 + \langle x, e^n_4 \rangle e^n_4$
where $e^n_{\mu} = \underbrace{s_{\mu}}_{||e_{\mu}||}$ that is the normalized (unit norm) version
of e_{μ} . Then $x - \frac{1}{2} = \langle x, e^n_{\mu} \rangle e^n_{\mu} + \langle x, e^n_{\mu} \rangle e^n_3 + \langle x, e^n_{\mu} \rangle e^n_4$
and $||x - \frac{1}{2}||^2 = \underbrace{z_{\mu}}_{k=2} \langle x, e^n_{\mu} \rangle |^2 = \underbrace{z_{\mu}}_{k=2} e^n_{\mu} \frac{x}{k} \sum_{k=2}^{n} \frac{1}{2} e^n_{\mu} \frac{x}{k} \sum_{k=2}^{n} \frac{x}{k} \sum_{k=2}^{n} \frac{1}{2} e^n_{\mu} \frac{x}{k} \sum_{k=2}^{n} \frac{x}{k} \sum_{k=2}^{n} \frac{1}{2} e^n_{\mu} \frac{x}{k} \sum_{k=2}^{n} \frac{1}{2} e^n_{\mu} \frac{x}{k} \sum_{k=2}^{n} \frac{x}{k} \sum_{k=2}^{n}$

Scanned with CamScanner

= +