EE 503
Quiz 4
Conducted in Final Exam week
(Duration: 15 minutes)

1. (Quiz \#4, 15 minutes) The random vector \mathbf{x} has the following correlation matrix:

$$
\mathbf{R}_{x}=\left[\begin{array}{cccc}
4 & 1 & 0 & 0 \\
1 & 4 & 0 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

a) Find the basis vectors for the KL transform associated with the given auto-correlation matrix.
b) Assume that the random vector \mathbf{x} is approximated by projecting the vector \mathbf{x} to a 1-dimensional subspace. Find the sub-space with the minimum mean square approximation error $E\left\{\|\mathbf{x}-\hat{\mathbf{x}}\|^{2}\right\}$ where $\hat{\mathbf{x}}=\mathbf{P}_{\mathbf{u}} \mathbf{x}$ and $\mathbf{P}_{\mathbf{u}}$ is the orthogonal projector to \mathbf{u}.
c) What is the total MSE $E\left\{\|\mathbf{x}-\hat{\mathbf{x}}\|^{2}\right\}$ of the approximation with the optimal \mathbf{u} ?
(condictel Quiz in h_{t}^{4} final's week)
Problem:

$$
{\underset{-}{R}}_{x}=\left[\begin{array}{cc:c}
4 & 1 & 0 \\
1 & 4 & \underline{=} \\
\hdashline 0 & 2 & 1 \\
= & 1 & 2
\end{array}\right]
$$

the eigenvectors of R_{r}
Hence,

$$
=\left[\begin{array}{l}
c \\
d
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \lambda_{i}^{\prime}=3,\left[\begin{array}{l}
e \\
d
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \lambda_{i}^{\prime}=1
$$

$$
\{\underbrace{\left\{\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]}_{\substack{b \\
\lambda_{R_{4}}^{n}=5}},\left[\begin{array}{c}
1 \\
-2 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array} \left\lvert\,,\left[\begin{array}{c}
0 \\
0 \\
1 \\
1
\end{array}\right]\right.\right\}
$$

The eigenvector set form un . Mhogonal basis. for R^{4}.
b) From KL transformation result the iptimalaspace should te spanned by the eigenvector with lagent eigenvalue.
$\left.\begin{array}{l}\text { Then } \underline{v}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right] ; \quad P_{u}=\frac{\underline{v} v^{\top}}{\|v\|^{2}}=\frac{1}{2}\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{ll}11 & 0\end{array}\right] \\ \vdots\end{array}\right]=\frac{1}{2}\left[\begin{array}{c|c}11 & 0 \\ 11 & \underline{0} \\ \underline{0} & \underline{O}\end{array}\right]$
c) Assume x is expressed in terms of the eigen vectors of R_{x}, tnt is $\quad \underline{x}=\left\langle\underline{x}_{1} \underline{e}_{1}^{n}\right\rangle e_{1}^{n}+\left\langle\underline{x}, e_{2}^{n}\right\rangle e_{2}^{n}+\left\langle\underline{x}, e_{3}^{n}\right\rangle e_{3}^{n}+\left\langle x_{2} e_{4}^{n}\right\rangle e_{4}^{n}$
where $e_{k}^{n}=\frac{e_{k}}{\left\|e_{k}\right\|}$, that is the normalized (unit norm) version of e_{x}. Then $\underline{x}-\underline{\hat{x}}=\left\langle x_{1} e_{2}^{n}\right\rangle \underline{e}_{2}^{n}+\left\langle\underline{y}_{1} e_{3}^{n}\right\rangle \underline{e}_{3}^{n}+\left\langle x, e_{4}^{n}\right\rangle e_{4}^{n}$ and $\|\underline{x}-\hat{x}\|^{2}=\left.\sum_{k=2}^{4}\left\langle\underline{x}, e_{2}^{n}\right\rangle\right|^{2}=\sum_{k=2}^{4} e_{k}^{n} \underline{x} \underline{x}^{\top} e_{k}^{n}$.

Finally,

$$
\begin{aligned}
E\left\{\|\underline{x}-\hat{x}\|^{2}\right\}=\sum_{k=2}^{4} e_{k}^{n} R_{x} e_{k}^{n}=\sum_{k=2}^{4}{\underset{R}{k}}_{(k) \underbrace{(k)}_{1}\left\|_{1}^{n}\right\|^{2}}^{1}=\sum_{x=2}^{4} \gamma_{p_{x}}^{(k)} & =3+3+1 \\
& =71
\end{aligned}
$$

