HOMEWORK I

Question 1 Consider the circuit graph below.

- a) Pick a tree. Determine the fundamental cutsets and the fundamental loops.
- **b)** Write the current equations on the fundamental cutsets and the voltage equations on the fundamental loops.
- c) Assign arbitrary nonzero branch voltages to the tree branches. Then compute the cotree-branch voltages.
- **d)** Assign arbitrary nonzero branch currents to the cotree branches. Then compute the tree-branch currents.
- e) Verify Tellegen's Theorem using the numerical values in Part (b) and Part (c).

Question 2

The figure on the left is the oriented graph of a lumped circuit.

Some of the branch currents and voltages are given below.

Find the missing currents and voltages.

i ₀ = 5A	i ₁ = 3A	i ₂ = ?	i ₃ = 4A	i ₄ =?	i ₅ = - 7A	i ₆ = ?	i ₇ = ?	i ₈ = 2A	i ₉ = - 4A
v ₀ = 4V	v ₁ = 3V	v ₂ = 6V	v ₃ =?	v ₄ =?	$v_5 = -2V$	v ₆ =?	v ₇ =?	v ₈ =?	v ₉ =?

<u>Answer:</u> $i_2 = -9 A$, $i_4 = 16 A i_6 = 5 A$, $i_7 = 0 A$, $v_3 = 5 V$, $v_4 = -7 V$, $v_6 = 11 V$, $v_7 = -9 V$, $v_8 = -2 V v_8 = -2 V$, $v_8 = -2 V$, $v_8 = -13 V$

Question 3 For a lumped circuit N made up of single-branch elements, the reduced incidence matrix A is as given below.

	1	2	3	4	5	6	7
	r-1	0	0	0	0	-1	ן 0
۸ <u>–</u>	1	0	0	1	-1	0	-1
A -	0	1	0	0	0	1	1
	L 0	0	1	0	1	0	0]

- a) Obtain the circuit graph.
- **b)** Let the circuit \hat{N} be the dual of N. Some of the branch currents and voltages for \hat{N} are given below. Find the missing currents and voltages.

$\hat{i}_1 = ?$	$\hat{i}_2 = 3 \mathrm{A}$	$\hat{i}_3 = ?$	$\hat{i}_4 = 1 \mathrm{A}$	$\hat{i}_5 = 1 \mathbf{A}$	$\hat{i}_6 = 6 \mathrm{A}$	$\hat{i}_7 = ?$
$\hat{v}_1 = ?$	$\hat{v}_2 = -5 \text{ V}$	$\hat{v}_3 = -1 \mathrm{V}$	$\hat{v}_4 = ?$	$\hat{v}_{5} = ?$	$\hat{v}_{6} = ?$	$\hat{v}_7 = 3 \text{ V}$

Question 4 Certain measurements are performed on four different lumped circuits. All four circuits have the same graph *G* with six branches. For the first three circuits, the branch voltage readings (in Volts) are recorded in the following table.

	V ₁	V2	V 3	V 4	V 5	V 6
Circuit #1	2	5	-3	-1	3	2
Circuit #2	1	-5	6	2	-1	-4
Circuit #3	9	8	1	?	5	3

For the fourth circuit, the branch current readings (in Amps) are provided below.

	i ₁	i2	i ₃	İ4	İ5	i ₆
Circuit #4	?	?	2	1	-3	-4

a) Find the missing current values, i_1 and i_2 , for the Circuit #4.

b) Find the missing voltage value v_4 for the Circuit #3.

<u>Answer:</u> a) $i_1 = -3 A$, $i_2 = 6 A b$) 4 V

Question 5 Consider the circuit shown below where "X" is a resistive element. The current through the 2 Ω resistor is measured to be $i_0(t) = 1.5\cos(t) A$.

- a) Find the current i_x(t).
- **b)** Find the instanteneous power delivered to X.
- c) Is X a time-invariant element? Explain.
- d) Is X a passive element? Explain.

<u>Answer:</u> $i_x(t) = 4 - 2.5cos(t) A$

Question 6 Consider the circuit shown below where "X" is a time-invariant resistive element.

When $i_s(t) = 6 + cos(\omega t) A$, the voltage across the 2 Ω resistor is measured to be $v_L(t) = 6 - 2cos(\omega t) V$.

- a) Find the instanteneous power delivered to X.
- **b)** Is X a linear element? Explain.
- c) Is X a passive element? Explain.
- d) Find a possible branch relation for X.

<u>Answer:</u> $P_x(t) = 18 + 24 \cos(\omega t) - 10\cos^2(\omega t) W$ $V_x = -10 i_x + 36$

Question 7

In the circuit shown below, "X" is a resistive element. The results of two different experiments are shown in the table where P_s is the power supplied by the voltage source.

- **a)** Determine the value of R.
- **b)** Find i_x when V_s is 13 V.
- c) Is the element X linear or non-linear? Explain.
- d) Is the element X active or passive? Explain.

Table:	Experiment	resu	lts
--------	------------	------	-----

Vs	Ps	i _x
5 V	5 W	2A
13 V	26 W	?

<u>Answer:</u> a)6 Ω b)1 A

Question 8

In the circuit shown below, "Y" is a non-linear element whose branch relation is $v_y = 3i_y^3$. The following are given:

- **a)** $V_s > 0$.
- **b)** The power absorbed by the 2 Ω resistor is 18 W.
- c) The power absorbed by Y is 48 W.
- d) The voltage source is absorbing power.

Find the power delivered by the current source.

Answer: 120 W