HOMEWORK X

Question 1 The switch in the following circuit is opened at t = 0 and reclosed at $t = \frac{\pi}{4}$ sec. {The circuit is in the steady-state at $t = 0^{-}$.}

Find and sketch $v_C(t)$ and $i_L(t)$ for $t \ge 0$.

<u>Answer</u> { $T = \pi/4 \text{ sec.}$ } $i_L(t) = 3\cos(4t) A$, $0 \le t \le T$; $i_L(t) = -8e^{-2(t-T)} + 2e^{-8(t-T)} + 3 A$, t > T.

Question 2 Consider the following circuit. Find and sketch $v_c(t)$ and $i_l(t)$ for $t \ge 0$.

 $v_{C}(0) = 5 V$, $i_{L}(0) = -3 A$.

Answer
$$v_c(t) = e^{-4t} [-2\cos(4t) + 8\sin(4t)] + 7 V, t \ge 0;$$

 $i_L(t) = e^{-4t} [1.5\cos(4t) + 2.5\sin(4t)] - 4.5 A, t \ge 0.$

Question 3 Consider the following circuit.

- a) Given $v_c(0^-) = -5 V$ and $i_L(0^-) = 3 A$, find and sketch $v_c(t)$ and $i_L(t)$ for t > 0.
- **b)** Given $v_{C}(0^{-}) = 0$ and $i_{L}(0^{-}) = 0$, find i(t).

Answer a)
$$v_c(t) = (5+90t)e^{-2t} V$$
, $i_l(t) = -(5+9t)e^{-2t}+6 A$, $t > 0$.
b) $i(t) = -0.75\delta(t) + [(0.5+7t)e^{-2t}-1.5]u(t) A$.

Question 4 Consider the following circuit. Find and sketch $v_C(t)$ and $i_L(t)$ for t > 0.

<u>Answer</u> $v_c(t) = -8e^{-2t} + 10e^{-3t} V$, $i_L(t) = -8e^{-2t} + 15e^{-3t} - 8 A$, t > 0.

Question 5 For the circuit below, $v_c(t) = 6e^{-2t} - 3e^{-6t} + 6$ V for $t \ge 0$. Find suitable values for R₁, R₂, L, C, V_s, I_s, V_o, and I_o.

 $v_C(0) = V_o, \quad i_L(0) = I_o.$

Question 6 A simple LTI second order circuit is composed of a resistor, R, a capacitor, C, an inductor, L, and an independent source. Under the unit step input, u(t), and the initial conditions $v_c(0^-) = V_o$ and $i_L(0^-) = I_o$, the capacitor voltage is observed to be

$$v_{c}(t) = 1 + \sqrt{5} e^{-2t} \cos[\sqrt{12} t - \tan^{-1}(2)] V, t > 0.$$

a) Sketch a proper circuit diagram and find suitable R, L, C values and initial conditions V_o and I_o .

b) Find the impulse response for $v_c(t)$ for the circuit of Part (a).