METU/EEED

EE 201

HOMEWORK X

Question 1 The switch in the following circuit is opened at $\mathrm{t}=0$ and reclosed at $\mathrm{t}=\frac{\pi}{4} \sec$.
\{The circuit is in the steady-state at $\mathrm{t}=0^{-}$.\}

Find and sketch $v_{c}(t)$ and $i_{L}(t)$ for $t \geq 0$.
Answer $\{T=\pi / 4 \mathrm{sec}.\} \quad i_{L}(t)=3 \cos (4 t) A, \quad 0 \leq t \leq T ; \quad i_{L}(t)=-8 e^{-2(t-T)}+2 e^{-8(t-T)}+3 A, t>T$.

Question 2 Consider the following circuit. Find and sketch $v_{c}(t)$ and $i_{L}(t)$ for $t \geq 0$.

$$
\begin{aligned}
\text { Answer } \quad v_{c}(t) & =e^{-4 t}[-2 \cos (4 t)+8 \sin (4 t)]+7 \quad V, \quad t \geq 0 \\
i_{L}(t) & =e^{-4 t}[1.5 \cos (4 t)+2.5 \sin (4 t)]-4.5 \quad A, \quad t \geq 0 .
\end{aligned}
$$

Question 3 Consider the following circuit.

a) Given $v_{C}\left(0^{-}\right)=-5 \mathrm{~V}$ and $i_{L}\left(0^{-}\right)=3 \mathrm{~A}$, find and sketch $v_{C}(t)$ and $i_{L}(t)$ for $t>0$.
b) Given $v_{C}\left(0^{-}\right)=0$ and $i_{L}\left(0^{-}\right)=0$, find $i(t)$.

> Answer a) $v_{c}(t)=(5+90 t) e^{-2 t} v, \quad i_{L}(t)=-(5+9 t) e^{-2 t}+6 A, \quad t>0$. b) $i(t)=-0.75 \delta(t)+\left[(0.5+7 t) e^{-2 t}-1.5\right] u(t) A$.

Question 4 Consider the following circuit. Find and sketch $v_{C}(t)$ and $i_{L}(t)$ for $t>0$.

$$
\begin{aligned}
& v_{c}\left(0^{-}\right)=2 \mathrm{~V}, \quad i_{L}\left(0^{-}\right)=-3 \mathrm{~A} ; \\
& v_{s}(t)=4 \delta(t) \mathrm{V}, \quad i_{s}(t)=8 u(t) A .
\end{aligned}
$$

Answer $v_{c}(t)=-8 e^{-2 t}+10 e^{-3 t} V, \quad i_{L}(t)=-8 e^{-2 t}+15 e^{-3 t}-8 \mathrm{~A}, \quad t>0$.

Question 5 For the circuit below, $v_{c}(t)=6 e^{-2 t}-3 e^{-6 t}+6 V$ for $t \geq 0$.
Find suitable values for $R_{1}, R_{2}, L, C, V_{s}, I_{s}, V_{0}$, and I_{0}.

Question 6 A simple LTI second order circuit is composed of a resistor, R, a capacitor, C, an inductor, L, and an independent source. Under the unit step input, $u(t)$, and the initial conditions $\mathrm{v}_{\mathrm{C}}\left(0^{-}\right)=\mathrm{V}_{0}$ and $\mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=\mathrm{I}_{0}$, the capacitor voltage is observed to be

$$
v_{c}(t)=1+\sqrt{5} e^{-2 t} \cos \left[\sqrt{12} t-\tan ^{-1}(2)\right] V, \quad t>0 .
$$

a) Sketch a proper circuit diagram and find suitable R, L, C values and initial conditions $V_{\text {。 }}$ and I_{0}.
b) Find the impulse response for $v_{c}(t)$ for the circuit of Part (a).

