METU/EEED

EE 201

HOMEWORK II

Question 1 Consider the circuit below.

a) Obtain the node equation in matrix form.
b) Solve the node equation, and determine the branch voltages and currents.
c) Obtain the mesh equation in matrix form.
d) Solve the mesh equation, and determine the branch currents and voltages.
e) Determine the powers delivered to/supplied by the branches. Verify that the power is conserved.
f) Suppose that only the current through the 5 V battery is required. Transform the upper Δ connected resistors to the equivalent Y connected resistors, solve the simple circuit (just one node equation), and determine the required current.

Answer Part (f) 2/3 A.

Question 2 Consider the circuit below.

a) Obtain the node equation in matrix form.
b) Solve the node equation, and determine the branch voltages and currents.
c) Obtain the mesh equation in matrix form.
d) Solve the mesh equation, and determine the branch currents and voltages.
e) Determine the powers delivered to/supplied by the branches.

Verify that the power is conserved.
f) Find the current i_{x} by superposition.

Answer Part (f) $i_{x}=0.5 \mathrm{~A}$.
Question 3 For the following circuit, find the powers delivered to/supplied by the elements. Is the 3-T two-port passive or active? Explain.

Question 4 The circuit element AVG is introduced in Figure 1. For the circuit given in Figure 2, find the node voltages, the current i, and the powers delivered to/supplied by the elements.

Figure 1 The circuit element AVG.

Figure 2 The circuit for Question 4.

