HOMEWORK III

Question 1 Consider the following circuit.

- a) Obtain the node equation in matrix form.
- **b)** Solve the node equation, and determine the branch voltages and currents.
- c) Obtain the mesh equation in matrix form.
- d) Solve the mesh equation, and determine the branch currents and voltages.
- **e)** Determine the powers delivered to/supplied by the branches. Verify that the power is conserved.

Question 2 For the circuit below, determine the powers delivered to/supplied by each element and verify that the power is conserved.

 $\textbf{Question 3} \;\; \text{Find the input resistance} \;\; R_{\text{in}} \; \text{of the one-port circuit below}.$

Answer $R_{in} = 3 \Omega$.

Question 4 Find the input resistance R of the one-port circuit below.

Answer $R = -0.8 \Omega$.

Question 5 Consider the circuit below.

- a) Obtain the Thevenin equivalent on the left side of a b terminals.
- **b)** Determine the set of i_s values so that the independent current source absorbs power.

<u>Answer</u> (b) $0 < i_s < 7/8 A$.

Question 6 Consider the three circuits below.

Express i₃ in terms of i₁ and i₂.

Question 7 In the following circuit, the instantenous power delivered to the 3Ω resistor is denoted by $P_{3\Omega}$.

It is known that

- i) for $v_s = 4 \text{ V}$ and $i_s = 12 \text{ A}$, $P_{3\Omega}$ is 0,
- ii) for $v_s = 1 \text{ V}$ and $i_s = -9 \text{ A}$, $P_{3\Omega}$ is 12 W.

What is $P_{3\Omega}$ for $v_s = 5$ V and $i_s = 5$ A?

Answer $P_{3\Omega} = 25/3 W$.