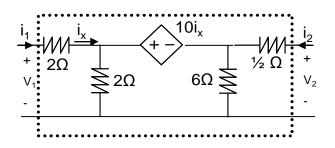
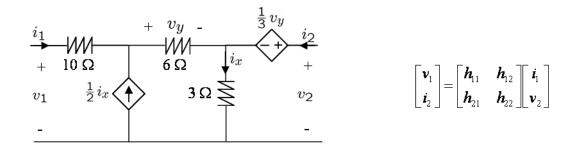

HOMEWORK IV


Question 1 For the following two port, the hybrid parameters are given as:

- **a)** Find α .
- **b)** Find R_1 , R_2 , and R_3 .

Question 2

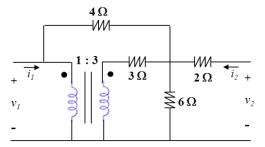
a) Obtain the resistance parameters for the following two-port circuit.


b) The two port shown in Part (a) is used in the following configuration. Determine R_L so that the power absorbed by R_L has the maximum value. Also compute this power.

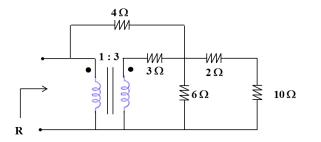
<u>Answer</u> (b) $R_L = 3.5 \Omega$, $P_L = 72/7 W$.

Question 3

a) Obtain the hybrid parameters for the following two-port circuit.

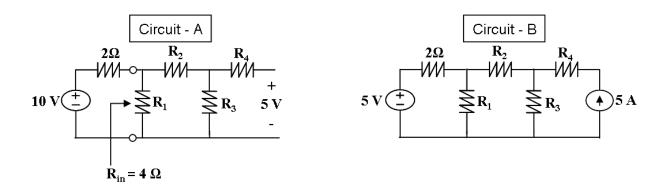


- b) Using the hybrid representation, find the power input to the two-port circuit given $v_1 = 8 V$ and $i_2 = -4 A$.
- c) Let $v_1 = 8$ V and $i_2 = -4$ A. Solve the circuit, determine the powers supplied/absorbed by the elements, and verify the result of Part (b).


<u>Answer</u> (b) 64 W.

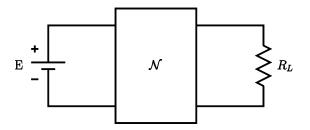
Question 4

a) Obtain the conductance (short circuit) and transmission parameters for the following two-port circuit.


b) The secondary port is terminated with a 10 Ω resistor as shown below. Find the input resistance R by driving the port terminals with a test source.

- c) Find R using the short circuit representation of the two-port circuit.
- d) Find R using the transmission representation of the two-port circuit.

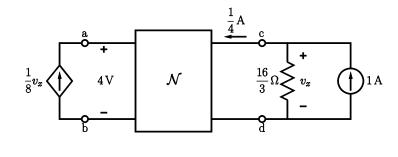
<u>Answer</u> (b) $R = 8/11 \Omega$.

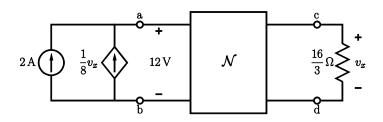

Question 5 Consider the circuits A and B given below.

Find the power supplied/absorbed by the 5 V source in Circuit - B.

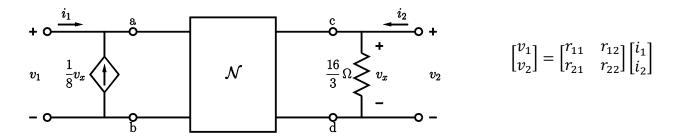
Answer 25/3 W, absorbed.

Question 6 Consider the following circuit where the two-port circuit \mathcal{N} contains only passive LTI resistors and ideal transformers. R_L is a passive load resistor. The power supplied by the source is denoted by P_s , and the power delivered to the load is denoted by P_L .


The measurement results of two experiments are given in the table below.


	RL	Ps	PL
Exp. #1	3 Ω	16 W	Po
Exp. #2	12 Ω	14 W	Po

- a) Find Po. (Hint: Tellegen's theorem.)
- **b)** What is the value of R_L that maximizes P_L ?
- c) Suppose that a third experiment with the R_L value found in Part (b) is performed. What will P_L and P_s be in this case?
- d) Obtain the short circuit parameters for \mathcal{N} in terms of E. Determine a set of suitable E values. Assign a value to E and design \mathcal{N} .


Answer (a)
$$P_0 = 4/3 W$$
, (b) $R_L = 6 \Omega$, (c) $P_L = 1.5 W$, $P_s = 15 W$.

Question 7 Consider the circuits below where the two-port \mathcal{N} contains only LTI resistors and ideal transformers.

- **a)** Find the value of v_x in the circuit that is driven by the 2A current source.
- b) Obtain the resistance parameters for the below two-port circuit.

- c) Given $i_1 = -2$ A and $i_2 = 4$ A, find the power input to the two-port \mathcal{N} .
- d) Obtain the resistance parameters for the two-port \mathcal{N} .

<u>Answer</u> (a) $v_x = 4 V$, (c) 19 W.