HOMEWORK VI

Question 1 Obtain and plot the transfer and input characteristics for the circuit given below.

<u>Answer</u> Linear region: $v_2 = -0.2v_1 + 6 V$; $i = 0.15v_1 - 0.75 mA$.

Question 2 In the below circuit, both op-amps are in the linear region.

- a) Find the voltage gain $G_v = \frac{v_{out}}{v_{in}}$.
- b) Determine the range for v_{in} values so that both op-amps stay in the linear region.

 $E_{sat} = 15 V.$

<u>Answer</u> a) $G_v = -1.5$.

Question 3 The lop-amp shown below is a circuit element similar to op-amp.

Its model is identical to the finite-gain ideal op-amp model (for which $R_{in} = \infty$, $R_{out} = 0$) except that the gain A has a low value.

Obtain and plot the transfer and input characteristics for the circuit given below.

<u>Answer</u> Linear region: $v_2 = 18v_1$.

Question 4 Obtain and plot the transfer characteristic for the circuit given below.

a)
$$V_x = 5 V$$
. b) $V_x = -10 V$.

<u>Answer</u> a) Linear region: $v_o = (5/6)v_s - 5 V$.

Question 5 Consider the circuit shown.

- a) Determine and plot the voltage transfer characteristic, v_{out} vs v_{in}.
- **b)** Determine and plot the input characteristic, i_{in} vs v_{in}.

<u>Answer</u> a) Linear region: $v_{out} = -5v_{in}$.

Question 6 The element shown below is the gentle-amp (GE), which is an op-amp like element.

In the linear region, its input resistance is 30 Ω , output resistance is 3 Ω , and gain is A = 5. The GE is in the linear region as long as $|A(v_+ - v_-)| \le 15 \text{ V}$.

Consider the circuit below.

a) Find the range of input (v_1) values so that the GE operates in the linear region.

b) When the GE is operating in the linear region, find the range of output (v_2) values.

<u>Answer</u> a) $-90/11 V \le v_1 \le 90/11 V$. b) $-126/11 V \le v_2 \le 126/11 V$.