HOMEWORK VI

Question 1 Obtain and plot the transfer and input characteristics for the circuit given below.

$$
\mathrm{E}_{\text {sat }}=12 \mathrm{~V} .
$$

Answer Linear region: $v_{2}=-0.2 v_{1}+6 \quad v ; i=0.15 v_{1}-0.75 \mathrm{~mA}$.

Question 2 In the below circuit, both op-amps are in the linear region.
a) Find the voltage gain $G_{v}=\frac{v_{\text {out }}}{v_{\text {in }}}$.
b) Determine the range for $v_{\text {in }}$ values so that both op-amps stay in the linear region.

$\mathrm{E}_{\text {sat }}=15 \mathrm{~V}$.
Answer a) $G_{v}=-1.5$.

Question 3 The lop-amp shown below is a circuit element similar to op-amp.

Its model is identical to the finite-gain ideal op-amp model (for which $R_{\text {in }}=\infty, R_{\text {out }}=0$) except that the gain A has a low value.

Obtain and plot the transfer and input characteristics for the circuit given below.

Answer Linear region: $v_{2}=18 v_{1}$.

Question 4 Obtain and plot the transfer characteristic for the circuit given below.
a) $V_{x}=5 \mathrm{~V}$. b) $\mathrm{V}_{\mathrm{x}}=-10 \mathrm{~V}$.

Answer a) Linear region: $v_{o}=(5 / 6) v_{s}-5 \mathrm{~V}$.

Question 5 Consider the circuit shown.
a) Determine and plot the voltage transfer characteristic, vout vs vin.
b) Determine and plot the input characteristic, $i_{i n}$ vs $v_{\text {in }}$.

Answer a) Linear region: $v_{\text {out }}=-5 v_{\text {in }}$.

Question 6 The element shown below is the gentle-amp (GE), which is an op-amp like element.

In the linear region, its input resistance is 30Ω, output resistance is 3Ω, and gain is $A=5$. The GE is in the linear region as long as $\left|\mathrm{A}\left(\mathrm{v}_{+}-\mathrm{v}_{-}\right)\right| \leq 15 \mathrm{~V}$.

Consider the circuit below.

a) Find the range of input $\left(v_{1}\right)$ values so that the GE operates in the linear region.
b) When the GE is operating in the linear region, find the range of output $\left(v_{2}\right)$ values.

Answer a) $-90 / 11 \mathrm{~V} \leq v_{1} \leq 90 / 11 \mathrm{~V}$. b) $-126 / 11 \mathrm{~V} \leq v_{2} \leq 126 / 11 \mathrm{~V}$.

