METU/EEED

EE 201

HOMEWORK VII

Question 1 In the circuit below, find (as a function of time) the instantaneous power, $\mathrm{p}(\mathrm{t})$, supplied by the current source for $\mathrm{t} \geq 0$.

Answer $p(t)=180-10.8 e^{-2 t} W, t \geq 0$.

Question 2 Consider the circuit below. The initial voltage on the capacitor is $v_{c}(0)=6 \mathrm{~V}$.
Find $i_{x}(t)$ for $t \geq 0$.

Answer $i_{x}(t)=(1 / 3)+(1 / 6) e^{-2 t} A, t \geq 0$.

Question 3 Find $v_{c}(t)$ for $t \geq 0$.

Answer $\tau=4 / 3 \mathrm{sec}, \quad v_{c}\left(3^{+}\right)-v_{c}\left(3^{-}\right)=0.5 \mathrm{~V}, \quad v_{c}(\infty)=7 / 3 \mathrm{~V}$.

Question 4 Find $v_{C_{1}}\left(0^{+}\right), v_{C_{2}}\left(0^{+}\right), v_{c_{1}}(\infty), v_{C_{2}}(\infty)$.

Answer $\quad v_{C 1}\left(0^{+}\right)=2 \mathrm{~V}, v_{C 2}\left(0^{+}\right)=5 \mathrm{~V}, v_{C 1}(\infty)=-14 \mathrm{~V}, \quad v_{C 2}(\infty)=6 \mathrm{~V}$.

Question 5 Consider the circuit below.

$$
V_{c 1}(0)=-4 V, \quad V_{c 2}(0)=-1 V ; \quad T=36 \ln (2) \mathrm{sec}
$$

a) Find and sketch $v_{c 1}(t)$ for $t \geq 0$.
b) Find the energy dissipated on the 3Ω resistor and the energy supplied by the 3 V source on the time interval $\left[0, \frac{T}{2}\right]$.
Find the stored energy in the 6 F capacitor at $\mathrm{t}=0$ and $\mathrm{t}=\mathrm{T} / 2$.
Answer a) $v_{c 1}\left(T^{-}\right)=10 \mathrm{~V}, \quad v_{c 2}\left(T^{-}\right)=2 \mathrm{~V}, \quad v_{c 1}\left(T^{+}\right)=4 \mathrm{~V} ; \quad v_{c 1}(t)=6-2 e^{-(t-T) / 16} \mathrm{~V}, t>T$.
b) $W_{3 \Omega}=36 \mathrm{~J}, W_{3 V}=36 \mathrm{~J}, e_{6 F}(0)=e_{6 F}(T / 2)=3 \mathrm{~J}$.

Question 6 Consider the circuit below.

$$
\mathrm{V}_{1}(0)=-3 \mathrm{~V}, \quad \mathrm{~V}_{2}(0)=7 \mathrm{~V}, \quad \mathrm{~V}_{3}(0)=3.5 \mathrm{~V} ; \quad \mathrm{V}_{1}\left(\mathrm{~T}^{-}\right)=0 .
$$

a) Find and sketch $v_{1}(t)$ for $t \geq 0$.
b) Find the energy delivered to the resistor on the interval $0 \leq t<T$ and the stored energies in the capacitors at $\mathrm{t}=0$ and $\mathrm{t}=\mathrm{T}^{-}$. Verify that the energy is conserved.

$$
\begin{aligned}
& \text { Answer a) } v_{2}\left(T^{-}\right)=2.5 \mathrm{~V}, \quad v_{3}\left(T^{+}\right)=1.5 \mathrm{~V} ; \quad v_{1}(t)=1+0.6 e^{-2(t-T) / 3} \mathrm{~V}, t>T \text {. } \\
& \text { b) } W_{R}=75 / 16 \mathrm{~J} .
\end{aligned}
$$

Question 7 In the circuit below, the switch is closed at $t=T$. Find $v_{R}(t)$ and $v_{2}(t)$ for $t>0$.

$$
\mathrm{v}_{1}\left(0^{-}\right)=-6 \mathrm{~V}, \quad \mathrm{~V}_{2}\left(0^{-}\right)=3 \mathrm{~V}, \quad \mathrm{~V}_{3}\left(0^{-}\right)=-1 \mathrm{~V} ; \quad \mathrm{T}=4 \ln (3) \mathrm{sec} .
$$

Answer $\quad V_{R}(t)=15-18 e^{-t / 4} V, \quad v_{2}(t)=15-12 e^{-t / 4} V, \quad 0 \leq t<T$;
$V_{R}(t)=15-15 e^{-(t-T) / 8} V, \quad V_{2}(t)=7-5 e^{-(t-T) / 8} V, \quad t>T$.

Question 8 The unit step response for $v_{o}(t)$ for the following circuit is $h_{u}(t)=\left(1-\frac{1}{3} e^{-2 t}\right) u(t) V$.

a) Find the zero-state response for $\mathrm{v}_{\mathrm{o}}(\mathrm{t})$ for the input given below.

b) Find suitable R, C_{1}, and C_{2} values to realize the given step response.

Answer a) The impulse response: $h(t)=(2 / 3) e^{-2 t} u(t)+(2 / 3) \delta(t) V$, The ramp response: $h_{r}(t)=\left[t+(1 / 6) e^{-2 t}-(1 / 6)\right] u(t) V$.
b) $C_{1}=2 C_{2}, R C_{2}=1 / 6$.

