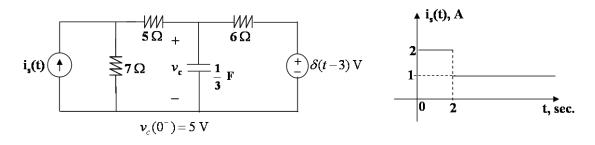
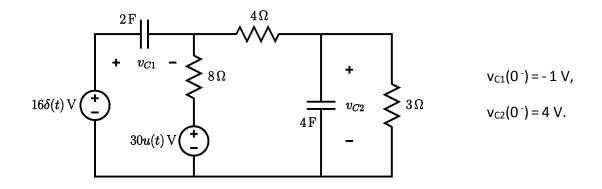

HOMEWORK VII

Question 1 In the circuit below, find (as a function of time) the instantaneous power, p(t), supplied by the current source for $t \ge 0$.

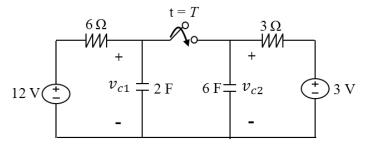


<u>Answer</u> $p(t) = 180 - 10.8e^{-2t}$ W, $t \ge 0$.

Question 2 Consider the circuit below. The initial voltage on the capacitor is $v_C(0) = 6 V$. Find $i_x(t)$ for $t \ge 0$.

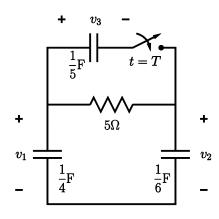


<u>Answer</u> $i_x(t) = (1/3) + (1/6)e^{-2t} A, t \ge 0.$


<u>Answer</u> $\tau = 4/3 \text{ sec}$, $v_c(3^+) - v_c(3^-) = 0.5 \text{ V}$, $v_c(\infty) = 7/3 \text{ V}$.

Question 4 Find $v_{C1}(0^+)$, $v_{C2}(0^+)$, $v_{C1}(\infty)$, $v_{C2}(\infty)$.

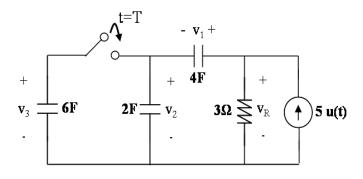
<u>Answer</u> $v_{C1}(0^+) = 2 V$, $v_{C2}(0^+) = 5 V$, $v_{C1}(\infty) = -14 V$, $v_{C2}(\infty) = 6 V$.


Question 5 Consider the circuit below.

 $v_{c1}(0) = -4 V$, $v_{c2}(0) = -1 V$; T = 36ln(2) sec.

- **a)** Find and sketch $v_{c1}(t)$ for $t \ge 0$.
- **b)** Find the energy dissipated on the 3 Ω resistor and the energy supplied by the 3 V source on the time interval $\left[0, \frac{T}{2}\right]$. Find the stored energy in the 6 F capacitor at t = 0 and t = T/2.

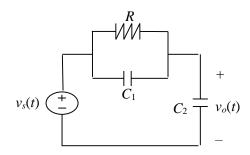
<u>Answer</u> a) $v_{c1}(T^{-}) = 10 V$, $v_{c2}(T^{-}) = 2 V$, $v_{c1}(T^{+}) = 4 V$; $v_{c1}(t) = 6 - 2e^{-(t-T)/16} V$, t > T. b) $W_{3\Omega} = 36 J$, $W_{3V} = 36 J$, $e_{6F}(0) = e_{6F}(T/2) = 3 J$. Question 6 Consider the circuit below.

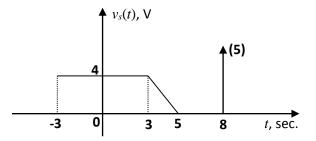


 $v_1(0) = -3 V$, $v_2(0) = 7 V$, $v_3(0) = 3.5 V$; $v_1(T^{-}) = 0$.

a) Find and sketch $v_1(t)$ for $t \ge 0$.

b) Find the energy delivered to the resistor on the interval $0 \le t < T$ and the stored energies in the capacitors at t = 0 and $t = T^-$. Verify that the energy is conserved.


Question 7 In the circuit below, the switch is closed at t = T. Find $v_R(t)$ and $v_2(t)$ for t > 0.


 $v_1(0^-) = -6 V$, $v_2(0^-) = 3 V$, $v_3(0^-) = -1 V$; $T = 4 \ln(3)$ sec.

Answer
$$v_R(t) = 15 - 18e^{-t/4} V$$
, $v_2(t) = 15 - 12e^{-t/4} V$, $0 \le t < T$;
 $v_R(t) = 15 - 15e^{-(t-T)/8} V$, $v_2(t) = 7 - 5e^{-(t-T)/8} V$, $t > T$.

Question 8 The unit step response for $v_0(t)$ for the following circuit is $h_u(t) = (1 - \frac{1}{3}e^{-2t})u(t) V$.

a) Find the zero-state response for $v_0(t)$ for the input given below.

b) Find suitable R, C₁, and C₂ values to realize the given step response.

<u>Answer</u> a) The impulse response: $h(t) = (2/3)e^{-2t}u(t) + (2/3)\delta(t) V$, The ramp response: $h_r(t) = [t + (1/6)e^{-2t} - (1/6)]u(t) V$. b) $C_1 = 2C_2$, $RC_2 = 1/6$.