HOMEWORK VIII

Question 1 Consider the circuit below. Find $i_2(t)$ for $t \ge 0$.

Answer
$$i_2(t) = 16 - 12.5e^{-5t/16}$$
 A, $t \ge 0$.

Question 2 In the circuit below, find the inductor and capacitor currents and voltages at $t=0^+$ and $t=\infty$.

 $i_{L1}(0^{-}) = -4 A$, $i_{L2}(0^{-}) = -4 A$, $v_C(0^{-}) = -4 V$.

<u>Answer</u> $i_{L1}(0^+) = -2 A$, $i_{L2}(0^+) = 1 A$, $v_C(0^+) = -3 V$; $v_{L1}(0^+) = -10.25 V$, $v_{L2}(0^+) = 3.75 V$, $i_C(0^+) = 3.75 A$; $i_{L1}(\infty) = -4 A$, $i_{L2}(\infty) = 0$, $v_C(\infty) = 12 V$. **Question 3** In the circuit below, $i_L(0^-) = 2$ A. Find and sketch $i_R(t)$ for $t > 0^-$.

<u>Answer</u> $i_R(t) = 2\delta(t) + (2 - 9e^{-4t})u(t)$ A.

Question 4 Consider the circuit given below. Find and sketch $v_1(t)$ for $t \ge 0$.

Question 5 Consider the circuit given below. Find and sketch $i_2(t)$ and v(t) for $t \ge 0$. Find the stored energy in the 6 H inductor at $t = \infty$.

<u>Answer</u> $i_1(t) = 13 - 8e^{-2t} A$, $v(t) = 48e^{-2t} V$, $0 \le t < T$; $i_1(T^+) = -1 A$; $e_{6H}(\infty) = 12 J$.

Question 6 Consider the following circuit. The switch is opened at t = T.

a) Find and sketch $i_1(t)$ and $i_3(t)$ for $t \ge 0$.

b) Find the energy delivered to the resistor on the interval $0 \le t < T$.

<u>Answer</u> a) $i_1(t) = 1 + 9e^{-2t} A$, $0 \le t < T$; T = 0.5 ln(3) sec; $i_3(t) = -2e^{-1.5(t-T)} A$, t > T. b) $W_R = 96 J$.

Question 7 In the circuit shown below, the switch is closed during $0 \le t < T$, and it is opened at t = T.

- a) Find $i_1(t)$ and $i_3(t)$ for $t \ge 0$.
- **b)** Find the energy supplied by the battery and the energy delivered to the resistor on the interval $0 \le t < T$. Find the stored energies in the inductors at t = 0 and $t = T^-$. Verify that the energy is conserved.

<u>Answer</u> a) $i_1(t) = 7 - 2e^{-t} A$, $0 \le t < T$; T = ln(2) sec; $i_3(t) = 6 - 5.5e^{-(t-T)/3} A$, t > T. b) $W_{1S} = 72T - 18 J$, $W_R = 72T - 29.25 J$, $E_2(T^-) = 6.75 J$.