METU/EEED

EE 201

HOMEWORK VIII

Question 1 Consider the circuit below. Find $i_{2}(t)$ for $t \geq 0$.

Answer $i_{2}(t)=16-12.5 e^{-5 t / 16} A, t \geq 0$.

Question 2 In the circuit below, find the inductor and capacitor currents and voltages at $\mathrm{t}=0^{+}$and $\mathrm{t}=\infty$.

$$
\begin{array}{ll}
\text { Answer } \quad & i_{L 1}\left(O^{+}\right)=-2 \mathrm{~A}, \quad i_{L 2}\left(O^{+}\right)=1 \mathrm{~A}, \quad v_{c}\left(0^{+}\right)=-3 \mathrm{~V} ; \\
& v_{L 1}\left(O^{+}\right)=-10.25 \mathrm{~V}, \quad v_{L 2}\left(0^{+}\right)=3.75 \mathrm{~V}, \quad i_{C}\left(0^{+}\right)=3.75 \mathrm{~A} ; \\
i_{L 1}(\infty)=-4 \mathrm{~A}, \quad i_{L 2}(\infty)=0, \quad v_{c}(\infty)=12 \mathrm{~V} .
\end{array}
$$

Question 3 In the circuit below, $\mathrm{i}_{\mathrm{L}}\left(\mathrm{O}^{-}\right)=2 \mathrm{~A}$. Find and sketch $\mathrm{i}_{\mathrm{R}}(\mathrm{t})$ for $\mathrm{t}>\mathrm{O}^{-}$.

$$
\text { Answer } i_{R}(t)=2 \delta(t)+\left(2-9 e^{-4 t}\right) u(t) A
$$

Question 4 Consider the circuit given below. Find and sketch $v_{1}(t)$ for $t \geq 0$.

$$
\mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=6 \mathrm{~A} ; \quad \mathrm{v}_{\mathrm{s}}(\mathrm{t})=24 \delta(\mathrm{t}-2 \mathrm{~T}) \mathrm{V}
$$

$$
\text { Answer } \quad v_{1}(t)=32+4 e^{-2(t-T)} V, T \leq t<2 T ; \quad v_{1}\left(2 T^{+}\right)=45 \mathrm{~V}
$$

Question 5 Consider the circuit given below. Find and sketch $i_{2}(t)$ and $v(t)$ for $t \geq 0$.
Find the stored energy in the 6 H inductor at $\mathrm{t}=\infty$.

Answer $i_{1}(t)=13-8 e^{-2 t} A, \quad v(t)=48 e^{-2 t} V, \quad 0 \leq t<T ; \quad i_{1}\left(T^{+}\right)=-1 A ; \quad e_{6 H}(\infty)=12 \mathrm{~J}$.

Question 6 Consider the following circuit. The switch is opened at $\mathrm{t}=\mathrm{T}$.

$$
\begin{aligned}
& \mathrm{i}_{1}(0)=10 \mathrm{~A}, \\
& \mathrm{i}_{2}(0)=2 \mathrm{~A}, \\
& \mathrm{i}_{3}(0)=4 \mathrm{~A} ; \\
& \mathrm{i}_{2}\left(\mathrm{~T}^{-}\right)=0 .
\end{aligned}
$$

a) Find and sketch $i_{1}(t)$ and $i_{3}(t)$ for $t \geq 0$.
b) Find the energy delivered to the resistor on the interval $0 \leq \mathrm{t}<\mathrm{T}$.
Answer
a) $i_{1}(t)=1+9 e^{-2 t} A, 0 \leq t<T ; T=0.5 \ln (3) \sec ; i_{3}(t)=-2 e^{-1.5(t-T)} A, t>T$.
b) $W_{R}=96 \mathrm{~J}$.

Question 7 In the circuit shown below, the switch is closed during $0 \leq t<T$, and it is opened at $\mathrm{t}=\mathrm{T}$.

a) Find $i_{1}(t)$ and $i_{3}(t)$ for $t \geq 0$.
b) Find the energy supplied by the battery and the energy delivered to the resistor on the interval $0 \leq t<T$. Find the stored energies in the inductors at $t=0$ and $t=T$.
Verify that the energy is conserved.

Answer
a) $i_{1}(t)=7-2 e^{-t} A, 0 \leq t<T ; T=\ln (2) \sec ; i_{3}(t)=6-5.5 e^{-(t-T) / 3} A, t>T$.
b) $W_{15}=72 T-18 \mathrm{~J}, W_{R}=72 T-29.25 \mathrm{~J}, E_{2}\left(T^{-}\right)=6.75 \mathrm{~J}$.

