HOMEWORK I

Question 1 The terminal equation of a 3-branch LTI coupled inductors (CI) is given below,

$$\begin{bmatrix} v_1(t) \\ v_2(t) \\ v_3(t) \end{bmatrix} = \begin{bmatrix} 10 & 7 & 4 \\ 7 & 5 & 3 \\ 4 & 3 & 2 \end{bmatrix} D \begin{bmatrix} i_1(t) \\ i_2(t) \\ i_3(t) \end{bmatrix}.$$

- a) Is this CI passive or active? Why?
- **b)** Compute the stored energy in the CI given

(i) $i_1 = 1 A$, $i_2 = -2 A$, $i_3 = -1 A$. (ii) $i_1 = 1 A$, $i_2 = -2 A$, $i_3 = 1 A$.

c) The terminals of the third branch are short circuited, i.e., $v_3 = 0$. Obtain the terminal equation of the 2-branch CI,

$$\begin{bmatrix} \mathbf{v}_1(t) \\ \mathbf{v}_2(t) \end{bmatrix} = \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} D \begin{bmatrix} \mathbf{i}_1(t) \\ \mathbf{i}_2(t) \end{bmatrix}.$$

Obtain the T and π equivalent models, and the equivalent model involving an ideal transformer. Comment.

<u>Hint:</u> For part (a), see Lec. 2 video 22nd minute and then look up the keyword "quadratic form" from internet sources.

Ans: a) Passive, b) (i) 4 J, c) $v_1(t) = 2 \frac{d}{dt} i_1(t) + \frac{d}{dt} i_2(t)$

Question 2 Consider the circuit below.

Given $i_1(0) = 2\sqrt{2} A$ and $v_c(t) = 4\cos(2t) V$.

a) Find $i_1(t)$ and the source voltage $v_s(t)$.

b) Compute the stored energies in the coupled inductors and the capacitor at $t = \frac{\pi}{2}$ sec.

Question 3 Consider the circuit below where the two-port $\mathcal N$ is LTI resistive.

- a) Find the inductances L_1 , L_2 , M and the constant K.
- **b)** Find the resistance parameters of the two-port \mathcal{N} .
- c) Find the instantaneous power input, p(t), to \mathcal{N} .
- **d)** Computing the integral of p(t) from zero to infinity, find the energy delivered to \mathcal{N} on the interval $[0, \infty)$.
- e) Compute the stored energy in the coupled inductors at t = 0. Comment.
- f) Observe that the coefficients a_k and b_k of circuit variables with the form $a_k \exp(\alpha t)$ and $b_k \exp(\beta t)$ for $\alpha \neq \beta$ do not interact or affect each other. Is this a coincidence specific to this problem? Comment.

Question 4 Consider the circuit below.

- a) Obtain the state equation.
- **b)** Find the natural frequencies.
- c) Obtain the state transition matrix.
- d) Given $i_{L1}(0) = 2$ A and $i_{L2}(0) = -8$ A, find $i_{L1}(t)$ and $i_{L2}(t)$ for $t \ge 0$, and compute the total energy delivered to the resistors on the interval $[0, \infty)$.

Ans: b) $s_1 = -1$, $s_2 = -6$ d) $i_{L1}(t) = 2e^{-6t}A$, $t \ge 0$

Question 5 The following two-port \mathcal{N} is LTI resistive.

a) Is \mathcal{N} a passive or an active two-port? Why? <u>Hint:</u> Denote the resistance matrix by R. Write $R = R_s + R_{ss}$ where $R_s = (R + R^T)/2$ is a symmetric matrix and $R_{ss} = (R - R^T)/2$ is a skew-symmetric matrix.

b) Consider the following circuit.

- (i) Obtain the state equation.
- (ii) For $v_c(0) = 2 V$ and $v_s(t) = 3 V$, find $v_c(t)$ for $t \ge 0$.
- c) Consider the following circuit.

- (i) Obtain the state equation.
- (ii) Determine the natural frequencies.
- (iii) Obtain the state transition matrix.
- (iv) Let $i_{L1}(0) = -3$ A. Find $i_{L2}(0)$ such that $i_{L1}(t) \rightarrow 0$ as $t \rightarrow \infty$.

Ans: a) Active, b) (ii) $v_c(t) = -10e^{2t} + 12 V$, $t \ge 0 c$) (ii) $s_1 = 5$, $s_2 = -1$, (iv) $i_{L2}(0) = 3 A$