HOMEWORK I

Question 1 The terminal equation of a 3-branch LTI coupled inductors (CI) is given below,

$$
\left[\begin{array}{l}
\mathrm{v}_{1}(\mathrm{t}) \\
\mathrm{v}_{2}(\mathrm{t}) \\
\mathrm{v}_{3}(\mathrm{t})
\end{array}\right]=\left[\begin{array}{ccc}
10 & 7 & 4 \\
7 & 5 & 3 \\
4 & 3 & 2
\end{array}\right] D\left[\begin{array}{l}
\mathrm{i}_{1}(\mathrm{t}) \\
\mathrm{i}_{2}(\mathrm{t}) \\
\mathrm{i}_{3}(\mathrm{t})
\end{array}\right] .
$$

a) Is this Cl passive or active? Why?
b) Compute the stored energy in the Cl given

$$
\begin{array}{ll}
\text { (i) } i_{1}=1 \mathrm{~A}, i_{2}=-2 \mathrm{~A}, i_{3}=-1 \mathrm{~A} . & \text { (ii) } i_{1}=1 \mathrm{~A}, \mathrm{i}_{2}=-2 \mathrm{~A}, i_{3}=1 \mathrm{~A} \text {. }
\end{array}
$$

c) The terminals of the third branch are short circuited, i.e., $\mathrm{v}_{3}=0$. Obtain the terminal equation of the 2-branch Cl ,

$$
\left[\begin{array}{l}
\mathrm{v}_{1}(\mathrm{t}) \\
\mathrm{v}_{2}(\mathrm{t})
\end{array}\right]=\left[\begin{array}{ll}
? & ? \\
? & ?
\end{array}\right] D\left[\begin{array}{l}
\mathrm{i}_{1}(\mathrm{t}) \\
\mathrm{i}_{2}(\mathrm{t})
\end{array}\right] .
$$

Obtain the T and π equivalent models, and the equivalent model involving an ideal transformer. Comment.

Hint: For part (a), see Lec. 2 video $22^{\text {nd }}$ minute and then look up the keyword "quadratic form" from internet sources.

Ans: a) Passive, b) (i) $4 \mathrm{~J}, \mathrm{c}) v_{1}(t)=2 \frac{d}{d t} i_{1}(t)+\frac{d}{d t} i_{2}(t)$

Question 2 Consider the circuit below.

Given $i_{1}(0)=2 \sqrt{2} A$ and $v_{c}(t)=4 \cos (2 t) V$.
a) Find $i_{1}(t)$ and the source voltage $v_{s}(t)$.
b) Compute the stored energies in the coupled inductors and the capacitor at $\mathrm{t}=\frac{\pi}{8} \mathrm{sec}$.

Question 3 Consider the circuit below where the two-port \mathcal{N} is LTI resistive.
$v_{1}(t)=12 e^{-2 t}+12 e^{-4 t} \mathrm{~V}$
$i_{1}(t)=2 e^{-4 t} \mathrm{~A}$

a) Find the inductances L_{1}, L_{2}, M and the constant K.
b) Find the resistance parameters of the two-port \mathcal{N}.
c) Find the instantaneous power input, $\mathrm{p}(\mathrm{t})$, to \mathcal{N}.
d) Computing the integral of $p(t)$ from zero to infinity, find the energy delivered to \mathcal{N} on the interval $[0, \infty)$.
e) Compute the stored energy in the coupled inductors at $\mathrm{t}=0$. Comment.
f) Observe that the coefficients a_{k} and b_{k} of circuit variables with the form $a_{k} \exp (\alpha t)$ and $b_{k} \exp (\beta t)$ for $\alpha \neq \beta$ do not interact or affect each other. Is this a coincidence specific to this problem? Comment.

Question 4 Consider the circuit below.

a) Obtain the state equation.
b) Find the natural frequencies.
c) Obtain the state transition matrix.
d) Given $\mathrm{i}_{11}(0)=2 \mathrm{~A}$ and $\mathrm{i}_{\mathrm{L}_{2}}(0)=-8 \mathrm{~A}$, find $\mathrm{i}_{\mathrm{L}_{1}}(\mathrm{t})$ and $\mathrm{i}_{\mathrm{L}_{2}}(\mathrm{t})$ for $\mathrm{t} \geq 0$, and compute the total energy delivered to the resistors on the interval $[0, \infty)$.

Ans: b) $s_{1}=-1, s_{2}=-6$ d) $i_{L 1}(t)=2 e^{-6 t} A, t \geq 0$

Question 5 The following two-port \mathcal{N} is LTI resistive.

$$
\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{ll}
3 & 4 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2}
\end{array}\right]
$$

a) Is \mathcal{N} a passive or an active two-port? Why?

Hint: Denote the resistance matrix by R. Write $R=R_{s}+R_{s s}$ where $R_{s}=\left(R+R^{T}\right) / 2$ is a symmetric matrix and $R_{s s}=\left(R-R^{\top}\right) / 2$ is a skew-symmetric matrix.
b) Consider the following circuit.

(i) Obtain the state equation.
(ii) \quad For $v_{c}(0)=2 V$ and $v_{s}(t)=3 V$, find $v_{c}(t)$ for $t \geq 0$.
c) Consider the following circuit.

(i) Obtain the state equation.
(ii) Determine the natural frequencies.
(iii) Obtain the state transition matrix.
(iv) Let $\mathrm{i}_{11}(0)=-3 \mathrm{~A}$. Find $\mathrm{i}_{22}(0)$ such that $\mathrm{i}_{11}(\mathrm{t}) \rightarrow 0$ as $\mathrm{t} \rightarrow \infty$.

Ans: a) Active, b) (ii) $\left.v_{c}(t)=-10 e^{2 t}+12 V, \mathrm{t} \geq 0 \mathrm{c}\right)$ (ii) $s_{1}=5, s_{2}=-1$, (iv) $i_{L 2}(0)=3 \mathrm{~A}$

