HOMEWORK II

Question 1. Given the state equation of an LTI dynamic circuit,

$\left[\dot{x}_1(t)\right]$		ſ 1	-1	0]	$\begin{bmatrix} x_1(t) \end{bmatrix}$
$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix}$	=	2	4	5	$x_2(t)$
$\dot{x}_3(t)$		L-2	-2	-3]	$\begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix}$

- a) Find the natural frequencies of the circuit.
- **b)** Determine real initial values $x_1(0), x_2(0)$, and $x_3(0)$ so that $x_1(t), x_2(t)$, and $x_3(t)$ are bounded for $t \ge 0$.
- c) For the initial values determined above, find $x_1(t), x_2(t)$, and $x_3(t)$ for $t \ge 0$.
- Ans: (a) $s_1 = 2$, $s_2 = j$, $s_3 = -j$. (b) (i) $x_1(0) = a/2$, $x_2(0) = a$, $x_3(0) = -a$; $a \in R$; (ii) $x_1(0) = b/2$, $x_2(0) = 0$, $x_3(0) = 0$; $b \in R$; The answer is any vector that can be expressed as a linear combination vectors shown in parts (i) and (ii), that is $x_1(0) = (a + b)/2$, $x_2(0) = a$, $x_3(0) = -a$; $a \in R, b \in R$.

- a) Obtain the state equation.
- **b)** Given $v_c(t) = (K_1 + K_2 t)e^{\lambda t}$, find λ and γ .
- **c)** Let $\gamma = \frac{17}{12}$ mho.
 - i. Find the natural frequencies of the circuit.
 - ii. Find suitable initial conditions $i_L(0)$ and $v_C(0)$ such that the energy delivered to the 2 Ω resistor over the time interval $[0, \infty)$ is 5 J.
- <u>Ans</u>: (b) $\lambda = -2$, $\gamma = -1/12$ mhos. (c) (i) $s_1 = 1$, $s_2 = -5$. (ii) $v_C(0) = 10$ V, $i_L(0) = 10/3$ A; or $v_C(0) = -10$ V, $i_L(0) = -10/3$ A.

Question 3. Consider the circuit below.

- **a)** Let $\alpha \neq 3$. Obtain the state equation.
- **b)** Find α if one of the natural frequencies is at -3. Find the other natural frequency.
- c) Find the range of α values to guarantee the stability of the circuit.
- **d)** What happens if $\alpha = 3$?

Ans: (b)
$$\alpha = 2 \ mhos$$
, $s_2 = -1$.

- (c) $\alpha < 3$ mhos.
- (d) Single state variable, $v_c = -i_L$.

Question 4. Consider the circuit below.

a) Obtain the state equation.

For the following parts, take $v_s(t) = 0$.

- **b)** Let $\beta = 2$ mho and $v_c(0) = 4$ V. Find $i_L(0)$ so that only a single mode is excited.
- **c)** Given $v_C(t) = \cos(\omega t)$ V, determine β and ω and find $i_L(t)$.

<u>Ans</u>: (b) $i_L(0) = -6 A$ or $i_L(0) = -3 A$. (c) $\beta = 0.75 mhos$, $\omega = 1 rad/sec$. Question 5. Consider the circuit below.

- a) Obtain the state equation.
- **b)** Find the natural frequencies of the circuit.
- c) Obtain the state transition matrix.
- **d)** Given $i_s(t) = 10e^{-t}$ A, find the particular solutions for $v_c(t)$ and $i_L(t)$.
- <u>Ans</u>: (b) $s_{1,2} = 2 \pm j$. (d) $i_{L_p}(t) = 2e^{-t} A$.
- Question 6. Consider the circuit below.

- a) Obtain the state equation.
- **b)** Find the natural frequencies of the circuit.
- **c)** Given $v_s(t) = 18$ V, find the particular solutions for $v_{c1}(t)$, $v_{c2}(t)$, and $i_L(t)$.
- d) Solve part (c) by studying the DC steady-state of the system. Does steady-state exist?

<u>Ans</u>: (b) $s_{1,2} = -4/15 \pm j\sqrt{254}/15$. (c) $v_{C_{1p}}(t) = 0$, $i_{L_p}(t) = 12$ A. Question 7. Consider the circuit below.

- a) Obtain the state equation.
- **b)** Find the natural frequencies of the circuit.
- c) What are the observed natural frequencies of the circuit for the branch variables $v_c(t)$, $i_{L1}(t)$, and $i_{L2}(t)$?

Ans: (b)
$$s_1 = 0$$
, $s_{2,3} = -53/2 \pm \sqrt{2497}/2$
(c) v_C : s_2, s_3 ; i_{L_1} , i_{L_2} : s_1 , s_2 , s_3 .

Question 8. Consider the circuit below.

- a) Obtain the state equation.
- **b)** Find the natural frequencies of the circuit.
- c) Let the initial values of dynamic elements be specified. Write the forms of the zeroinput solutions (do not determine the coefficients) for $v_C(t)$, $i_{L2}(t)$, $v_{L1}(t)$, and $i_x(t)$.
- d) Given $v_s(t) = 9e^{-t}$ V, find the particular solutions for $v_c(t)$, $i_{L1}(t)$, $i_{L2}(t)$, $v_{L1}(t)$, and $i_x(t)$.
- <u>Ans</u>: (b) $s_1 = 0$, $s_2 = -2$, $s_3 = -4$. (d) $i_{x_p}(t) = -33e^{-t} A$

Question 9. Consider the circuit below.

- a) Obtain the state equation.
- **b)** Express the natural frequencies in terms of *K*.
- c) Determine the value of K so that the natural frequencies are purely imaginary. For this value of K, obtain the state transition matrix. For the following parts, take K = 4.
- d) Find the natural frequencies of the circuit.
- e) Obtain the state transition matrix.
- **f)** Find the zero-input solution given $v_c(0) = 7 \text{ V}$, $i_L(0) = 4 \text{ A}$.
- g) Given $v_{s1}(t) = 8 \text{ V}$ and $i_{s2}(t) = 3e^{6t} \text{ A}$,
 - **i.** Find the particular solution, $\underline{x}_p(t)$.
 - **ii.** Find the zero-state solution.
 - iii. Determine the initial state $\underline{x}(0)$ so that $\underline{x}(t) = \underline{x}_p(t)$ for $t \ge 0$.
- **h)** Given $v_{s1}(t) = 0$ and $i_{s2}(t) = e^{4t}$ A, find the zero-state solution.

<u>Ans</u>: (c) K = 0.5 mhos.

- (d) $s_1 = 4$, $s_2 = 3$.
- (f) $v_{C_{zi}}(t) = 12e^{4t} 5e^{3t}$ V, $t \ge 0$.
- (g) (i) $i_{L_p}(t) = 2 + 6e^{6t} A.$ (ii) $i_{L_{zs}}(t) = -12e^{4t} + 4e^{3t} + 2 + 6e^{6t} A.$ (iii) $v_C(0) = 12 V, i_L(0) = 8 A.$
- (h) $v_{C_{rs}}(t) = -12e^{4t} + 16te^{4t} + 12e^{3t} V, t \ge 0.$