
EE502 HW2

Q1. Consider the system ẋ = Ax with x ∈ Rn. Suppose the following inequality holds

ATP + PA+ 2µP < 0

for some symmetric positive definite matrix P ∈ Rn×n and positive real number µ. Show that
all the eigenvalues λi of A must satisfy Re{λi} < −µ. (When the matrix A is as such, the system
ẋ = Ax is said to be asymptotically stable with stability margin µ.) Hint: Try first to rewrite
the inequality as [something]TP + P [something] < 0.

Q2. Consider the system ẋ = Ax with x ∈ Rn. For each of the below cases determine the
stability property of the system (exponentially stable, stable, or unstable).

(a) AT +A < 0.

(b) AT +A = 0.

(c) AT +A > 0.

Q3. Consider the system ẋ = Ax with x ∈ Rn. Suppose AT +A = 0.

(a) Show that the solutions satisfy x(t)Tx(t) = x(0)Tx(0) for all t.

(b) Show that the state transition matrix eAt is orthogonal for all t. (Recall that a square
matrix Q is orthogonal if QTQ = I.)

(c) Show that A cannot have any 2 × 2 or larger Jordan block. Hint: First show that all the
eigenvalues of A must reside on the imaginary axis.

Q4. Consider the system x+ = Ax with x ∈ Rn. Suppose the matrix A satisfies

ATPA− ρ2P < 0

for some symmetric positive definite matrix P ∈ Rn×n and positive real number ρ. Show that
all the eigenvalues λi of A must satisfy |λi| < ρ. Show also that we can find a positive number
c such that any solution satisfies ∥x(k)∥ ≤ cρk∥x(0)∥ for k = 0, 1, 2, . . .

Q5. Consider the system ẋ = PAx with P, A ∈ Rn×n. Suppose AT + A < 0 and P T = P > 0.
Show that this system is exponentially stable.

Q6. Given A ∈ Rn×n let the Lyapunov equation

ATP + PA = −Q

hold for symmetric positive definite matrices P, Q ∈ Rn×n. Using the eigenvectors of A show
that this equation implies that the eigenvalues of A must be with negative real parts.

Q7. Consider the system x+ = Ax with x ∈ Rn. Suppose for any initial condition x(0) = x0
the solution satisfies x(k) = 0 for some finite k. What can be said about the eigenvalues of A?



Q8. Consider the following second order LTV system

ẋ = A(t)x where A(t) = −
[
cos t
sin t

]
[cos t sin t] = −

[
cos2 t cos t sin t

cos t sin t sin2 t

]
(a) Using v(x) := xTx as a Lyapunov function show that this system is stable.

(b) Now we will show that this system exponentially stable via change of variables. Define the
new state z(t) := Q(t)x(t) where

Q(t) :=

[
cos t sin t

− sin t cos t

]
Prove the following: (i) ∥x(t)∥ = ∥z(t)∥ for all t. (In particular, Q(t)TQ(t) = I.) (ii) The
solution z(t) is described by an LTI system. (iii) The LTV system is exponentially stable. Hint:

Observe that Q̇ = Q

[
0 1

−1 0

]
=

[
0 1

−1 0

]
Q.

(c) Propose a time-varying Lyapunov function of the form w(x, t) = xTP (t)x where P (t)T =
P (t) for all t satisfies c1I ≤ P (t) ≤ c2I and ẇ ≤ −c3w for some fixed c1, c2, c3 > 0.

Q9. Consider the system x+ = Ax with x ∈ Rn. Suppose that this system is exponentially
stable. Given QT = Q > 0 show that the matrix P defined as

P := Q+ATQA+A2TQA2 +A3TQA3 + . . .

is well-defined (i.e., the infinite sum converges), symmetric positive definite, and solves the Stein
equation ATPA− P = −Q.

Q10. Consider the system x+ = eAx with x ∈ Rn. Given that this discrete-time system is expo-
nentially stable, show that the continuous-time system ẋ = Axmust also be exponentially stable.

Q11. Determine the stability of the below systems

ẋ =

 −1 0 2
0 0 0
0 0 0

x , ẋ =

 −1 0 0
0 0 2
0 0 0

x .

Q12. Determine the stability of the below systems

x+ =

 e−1 0 1
0 −1 0
0 0 −1

x , x+ =

 e−1 0 0
0 −1 1
0 0 −1

x .

Q13. Determine the stability of the below systems

x+ =

[
cos θ sin θ

− sin θ cos θ

]
x , ẋ =

[
0 1

−1 0

]
x .

Q14. Determine the (local) stability of the origin of the below systems

ẋ1 = x2 + x1(x
2
1 + x22)

ẋ2 = −x1 + x2(x
2
1 + x22)

and
ẋ1 = −x1 + x1(x

2
1 + x22)

ẋ2 = −x2 + x2(x
2
1 + x22)



by linearization if possible. Otherwise try simulation.

Q15. Determine the (local) stability of each equilibrium point of the below system, known as
either Lotka-Volterra equations or the predator-prey equations,

ẋ1 = x1(1− x2)
ẋ2 = −x2(1− x1)

by linearization if possible. Otherwise try simulation.


