EE502 HW2

Q1. Consider the system & = Ax with x € R™. Suppose the following inequality holds
ATP+ PA+2uP <0

for some symmetric positive definite matrix P € R™*™ and positive real number p. Show that
all the eigenvalues \; of A must satisfy Re{\;} < —p. (When the matrix A is as such, the system
& = Az is said to be asymptotically stable with stability margin p.) Hint: Try first to rewrite
the inequality as [something]” P 4+ P[something] < 0.

Q2. Consider the system © = Az with € R™. For each of the below cases determine the
stability property of the system (exponentially stable, stable, or unstable).

(a) AT+ A<0.

(b) AT+ A=0.

(c) AT +A>0.

Q3. Consider the system & = Az with z € R™. Suppose AT + A4 = 0.
(a) Show that the solutions satisfy z(t)Tx(t) = x(0)7x(0) for all ¢.

At

(b) Show that the state transition matrix e* is orthogonal for all t. (Recall that a square

matrix @ is orthogonal if QTQ = 1.)

(c) Show that A cannot have any 2 x 2 or larger Jordan block. Hint: First show that all the
eigenvalues of A must reside on the imaginary axis.

Q4. Consider the system 2T = Az with z € R™. Suppose the matrix A satisfies
ATPA—p’P <0

for some symmetric positive definite matrix P € R™*™ and positive real number p. Show that
all the eigenvalues \; of A must satisfy |\;| < p. Show also that we can find a positive number
¢ such that any solution satisfies ||z(k)|| < cp¥||z(0)|| for k=0, 1, 2, ...

Q5. Consider the system @ = PAx with P, A € R™". Suppose AT + A < 0and PT =P > 0.
Show that this system is exponentially stable.

Q6. Given A € R™" let the Lyapunov equation
ATP4+ PA=—-Q

hold for symmetric positive definite matrices P, Q € R™*™. Using the eigenvectors of A show
that this equation implies that the eigenvalues of A must be with negative real parts.

Q7. Consider the system 27 = Az with € R™. Suppose for any initial condition z(0) = x
the solution satisfies z(k) = 0 for some finite k. What can be said about the eigenvalues of A?



Q8. Consider the following second order LTV system

cos?t costsint
costsint sin? ¢

cost
sint

i =A(t)r where A(t)=— [ } [cost sint] = — [

T

(a) Using v(x) := z' z as a Lyapunov function show that this system is stable.

(b) Now we will show that this system exponentially stable via change of variables. Define the
new state z(t) := Q(t)x(t) where

cost sint
Q) = [ —sint cost }
Prove the following: (i) ||z(t)|| = ||z(t)| for all t. (In particular, Q(¢)TQ(¢t) = I.) (ii) The

solution z(t) is described by an LTT system. (iii) The LTV system is exponentially stable. Hint:

ObservethatQ:Q[ _(1) é}: [ _(1) (1)]@

(c) Propose a time-varying Lyapunov function of the form w(x, t) = 27 P(t)z where P(t)T =
P(t) for all ¢ satisfies c11 < P(t) < ¢ol and w < —cgw for some fixed c1, ¢a, ¢3 > 0.

Q9. Consider the system z+ = Az with 2 € R™. Suppose that this system is exponentially
stable. Given QT = @ > 0 show that the matrix P defined as

P:=Q+ ATQA+ A?TQA% + A3TQA3 + ...

is well-defined (i.e., the infinite sum converges), symmetric positive definite, and solves the Stein
equation ATPA— P = —Q.

Q10. Consider the system 2T = ez with 2 € R”. Given that this discrete-time system is expo-
nentially stable, show that the continuous-time system & = Ax must also be exponentially stable.

Q11. Determine the stability of the below systems

-1 0 2 -1 0 0
T = 0 0 0 |ux, T = 00 2 |=x
000 000
Q12. Determine the stability of the below systems
el 0 1 el 0 0
zt = 0 -1 0 |=x, zt = 0 -1 1=z
0 0 -1 0 0 -1
Q13. Determine the stability of the below systems
ot cosf sind - P 01 -
| —sinf cosf |7 -1 0 |7

Q14. Determine the (local) stability of the origin of the below systems

i = a9+ x(2? +23) and i = —x1+z1(2? + 23)
Ty = —x1+x2($%+x%) Tg = —:L’Q—l—mz(x%—i—x%)



by linearization if possible. Otherwise try simulation.

Q15. Determine the (local) stability of each equilibrium point of the below system, known as
either Lotka-Volterra equations or the predator-prey equations,

1 = x1(1—x9)
iQ = —.7}2(1—.%1)

by linearization if possible. Otherwise try simulation.



