Q1. Consider the system $\dot{x}=A x$ with $x \in \mathbb{R}^{n}$. Suppose the following inequality holds

$$
A^{T} P+P A+2 \mu P<0
$$

for some symmetric positive definite matrix $P \in \mathbb{R}^{n \times n}$ and positive real number μ. Show that all the eigenvalues λ_{i} of A must satisfy $\operatorname{Re}\left\{\lambda_{i}\right\}<-\mu$. (When the matrix A is as such, the system $\dot{x}=A x$ is said to be asymptotically stable with stability margin μ.) Hint: Try first to rewrite the inequality as $[\text { something }]^{T} P+P[$ something $]<0$.

Q2. Consider the system $\dot{x}=A x$ with $x \in \mathbb{R}^{n}$. For each of the below cases determine the stability property of the system (exponentially stable, stable, or unstable).
(a) $A^{T}+A<0$.
(b) $A^{T}+A=0$.
(c) $A^{T}+A>0$.

Q3. Consider the system $\dot{x}=A x$ with $x \in \mathbb{R}^{n}$. Suppose $A^{T}+A=0$.
(a) Show that the solutions satisfy $x(t)^{T} x(t)=x(0)^{T} x(0)$ for all t.
(b) Show that the state transition matrix $e^{A t}$ is orthogonal for all t. (Recall that a square matrix Q is orthogonal if $Q^{T} Q=I$.)
(c) Show that A cannot have any 2×2 or larger Jordan block. Hint: First show that all the eigenvalues of A must reside on the imaginary axis.

Q4. Consider the system $x^{+}=A x$ with $x \in \mathbb{R}^{n}$. Suppose the matrix A satisfies

$$
A^{T} P A-\rho^{2} P<0
$$

for some symmetric positive definite matrix $P \in \mathbb{R}^{n \times n}$ and positive real number ρ. Show that all the eigenvalues λ_{i} of A must satisfy $\left|\lambda_{i}\right|<\rho$. Show also that we can find a positive number c such that any solution satisfies $\|x(k)\| \leq c \rho^{k}\|x(0)\|$ for $k=0,1,2, \ldots$

Q5. Consider the system $\dot{x}=P A x$ with $P, A \in \mathbb{R}^{n \times n}$. Suppose $A^{T}+A<0$ and $P^{T}=P>0$. Show that this system is exponentially stable.

Q6. Given $A \in \mathbb{R}^{n \times n}$ let the Lyapunov equation

$$
A^{T} P+P A=-Q
$$

hold for symmetric positive definite matrices $P, Q \in \mathbb{R}^{n \times n}$. Using the eigenvectors of A show that this equation implies that the eigenvalues of A must be with negative real parts.

Q7. Consider the system $x^{+}=A x$ with $x \in \mathbb{R}^{n}$. Suppose for any initial condition $x(0)=x_{0}$ the solution satisfies $x(k)=0$ for some finite k. What can be said about the eigenvalues of A ?

Q8. Consider the following second order LTV system

$$
\dot{x}=A(t) x \quad \text { where } \quad A(t)=-\left[\begin{array}{c}
\cos t \\
\sin t
\end{array}\right]\left[\begin{array}{ll}
\cos t & \sin t
\end{array}\right]=-\left[\begin{array}{cc}
\cos ^{2} t & \cos t \sin t \\
\cos t \sin t & \sin ^{2} t
\end{array}\right]
$$

(a) Using $v(x):=x^{T} x$ as a Lyapunov function show that this system is stable.
(b) Now we will show that this system exponentially stable via change of variables. Define the new state $z(t):=Q(t) x(t)$ where

$$
Q(t):=\left[\begin{array}{rr}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right]
$$

Prove the following: (i) $\|x(t)\|=\|z(t)\|$ for all t. (In particular, $Q(t)^{T} Q(t)=I$.) (ii) The solution $z(t)$ is described by an LTI system. (iii) The LTV system is exponentially stable. Hint: Observe that $\dot{Q}=Q\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right] Q$.
(c) Propose a time-varying Lyapunov function of the form $w(x, t)=x^{T} P(t) x$ where $P(t)^{T}=$ $P(t)$ for all t satisfies $c_{1} I \leq P(t) \leq c_{2} I$ and $\dot{w} \leq-c_{3} w$ for some fixed $c_{1}, c_{2}, c_{3}>0$.

Q9. Consider the system $x^{+}=A x$ with $x \in \mathbb{R}^{n}$. Suppose that this system is exponentially stable. Given $Q^{T}=Q>0$ show that the matrix P defined as

$$
P:=Q+A^{T} Q A+A^{2 T} Q A^{2}+A^{3 T} Q A^{3}+\ldots
$$

is well-defined (i.e., the infinite sum converges), symmetric positive definite, and solves the Stein equation $A^{T} P A-P=-Q$.

Q10. Consider the system $x^{+}=e^{A} x$ with $x \in \mathbb{R}^{n}$. Given that this discrete-time system is exponentially stable, show that the continuous-time system $\dot{x}=A x$ must also be exponentially stable.

Q11. Determine the stability of the below systems

$$
\dot{x}=\left[\begin{array}{rrr}
-1 & 0 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] x, \quad \dot{x}=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right] x
$$

Q12. Determine the stability of the below systems

$$
x^{+}=\left[\begin{array}{rrr}
e^{-1} & 0 & 1 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right] x, \quad x^{+}=\left[\begin{array}{rrr}
e^{-1} & 0 & 0 \\
0 & -1 & 1 \\
0 & 0 & -1
\end{array}\right] x .
$$

Q13. Determine the stability of the below systems

$$
x^{+}=\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] x, \quad \dot{x}=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right] x .
$$

Q14. Determine the (local) stability of the origin of the below systems

$$
\begin{aligned}
& \dot{x}_{1}=x_{2}+x_{1}\left(x_{1}^{2}+x_{2}^{2}\right) \\
& \dot{x}_{2}=-x_{1}+x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)
\end{aligned} \quad \text { and } \quad \begin{aligned}
& \dot{x}_{1}=-x_{1}+x_{1}\left(x_{1}^{2}+x_{2}^{2}\right) \\
& \dot{x}_{2}=-x_{2}+x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)
\end{aligned}
$$

by linearization if possible. Otherwise try simulation.
Q15. Determine the (local) stability of each equilibrium point of the below system, known as either Lotka-Volterra equations or the predator-prey equations,

$$
\begin{aligned}
\dot{x}_{1} & =x_{1}\left(1-x_{2}\right) \\
\dot{x}_{2} & =-x_{2}\left(1-x_{1}\right)
\end{aligned}
$$

by linearization if possible. Otherwise try simulation.

