Q1. Consider the frictionless mass spring system

$$
m \ddot{y}+k y=u
$$

where constants m and k are the mass and the spring constant, respectively. The output y is the position of the mass and the input u is the force applied to the system.
(a) Is this system stable in the sense of Lyapunov?
(b) Is this system BIBO stable? If not, suggest a bounded input that would result in an unbounded output.

Q2. Consider the system

$$
\begin{aligned}
\dot{x} & =\left[\begin{array}{ll}
-5 & 4 \\
-8 & 7
\end{array}\right] x+\left[\begin{array}{c}
1 \\
\alpha
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
2 & \beta
\end{array}\right] x
\end{aligned}
$$

(a) Is this system stable in the sense of Lyapunov?
(b) Find α so that the system is BIBO stable for all β.
(c) Find β so that the system is BIBO stable for all α.

Q3. Consider the system

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x
\end{aligned}
$$

with nonzero matrices $B \in \mathbb{R}^{2 \times 1}$ and $C \in \mathbb{R}^{1 \times 2}$. This system is known to be unstable in the sense of Lyapunov. Show that if the system is BIBO stable then $A \in \mathbb{R}^{2 \times 2}$ cannot have complex eigenvalues.

Q4. Show that an LTV system $\dot{x}=A(t) x+B(t) u$ is controllable on some interval $\left[t_{0}, t_{1}\right]$ if and only if it is reachable on $\left[t_{0}, t_{1}\right]$.

Q5. Let \mathcal{R} and \mathcal{C} respectively denote the reachable and controllable subspaces of an LTV system. Given two times $t_{1}>t_{0}$ and a positive number $\varepsilon>0$ determine whether each of the below claims is true or false.
(a) $\mathcal{R}\left[t_{0}, t_{1}\right] \subset \mathcal{R}\left[t_{0}, t_{1}+\varepsilon\right]$.
(b) $\mathcal{R}\left[t_{0}, t_{1}\right] \subset \mathcal{R}\left[t_{0}-\varepsilon, t_{1}\right]$.
(c) $\mathcal{C}\left[t_{0}, t_{1}\right] \subset \mathcal{C}\left[t_{0}, t_{1}+\varepsilon\right]$.
(d) $\mathcal{C}\left[t_{0}, t_{1}\right] \subset \mathcal{C}\left[t_{0}-\varepsilon, t_{1}\right]$.

Q6. Given $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times k}$ prove or disprove (by constructing a counterexample) the below claims.
(a) If the pair (A, B) is controllable then so is the pair $\left(e^{A}, B\right)$.
(b) If the pair $\left(e^{A}, B\right)$ is controllable then so is the pair (A, B).
(c) If the pair (A, B) is controllable then so is the pair $\left(A^{-1}, B\right)$ for A nonsingular.
(d) If the pair (A, B) is controllable then so is the pair $\left(A^{T}, B\right)$.

Q7. Given $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times 1}$, suppose both (A, B) and $\left(A^{T}, B\right)$ pairs be controllable. Further assume that all the eigenvalues of A are distinct. Show that the below system

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =B^{T} x
\end{aligned}
$$

is BIBO stable if and only if it is asymptotically stable. Hint: See Q12(c) of HW1.
Q8. Consider the state equation $\dot{x}=A x+B u$, where $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times k}$, with (A, B) controllable. Let the linear state-feedback control law be $u=K x+G v$, where $K \in \mathbb{R}^{k \times n}$ and $G \in \mathbb{R}^{k \times k}$, with G nonsingular. Show that the closed-loop system $\dot{x}=(A+B K) x+B G v$, where v is now our new input, is controllable. What we are proving here is fundamental: Controllability is invariant under state feedback!

Q9. Given a controllable pair (A, B) suppose there exists $P=P^{T}>0$ such that $A^{T} P+P A \leq 0$. Prove then that the matrix $\left[A-B B^{T} P\right]$ is exponentially stable.

Q10. Here we provide an application of Q9. Consider a pair of generalized harmonic oscillators

$$
\begin{aligned}
\dot{x}_{1} & =A x_{1}+B u_{1} \\
y_{1} & =B^{T} x_{1}
\end{aligned} \quad \text { and } \quad \begin{aligned}
\dot{x}_{2} & =A x_{2}+B u_{2} \\
y_{2} & =B^{T} x_{2}
\end{aligned}
$$

where A is skew-symmetric and the pair (A, B) is controllable. Suppose now that we couple these systems through their outputs by letting $u_{1}=\alpha\left(y_{2}-y_{1}\right)$ and $u_{2}=\alpha\left(y_{1}-y_{2}\right)$, where α is some positive scalar. Show that the coupled harmonic oscillators synchronize, that is, $\left\|x_{1}(t)-x_{2}(t)\right\| \rightarrow 0$ as $t \rightarrow \infty$. Hint: write the differential equation for the error $e:=x_{1}-x_{2}$.

Q11. Consider the system

$$
\dot{x}=J x+B u
$$

where the matrix J is block diagonal with each block having the form

$$
J_{i}=\left[\begin{array}{cccccc}
\lambda_{i} & 1 & 0 & \cdots & 0 & 0 \\
0 & \lambda_{i} & 1 & \cdots & 0 & 0 \\
0 & 0 & \lambda_{i} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \lambda_{i} & 1 \\
0 & 0 & 0 & \cdots & 0 & \lambda_{i}
\end{array}\right]
$$

with $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$. Determine conditions on B that are necessary and sufficient for controllability.

Q12. Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times 1}$. Show that if A has two or more linearly independent eigenvectors that share the same eigenvalue then the pair (A, B) is not controllable.

Q13. Consider the system in controllable canonical form

$$
\dot{x}=\left[\begin{array}{ccc}
-\alpha_{1} & -\alpha_{2} & -\alpha_{3} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] x+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] u
$$

(a) Show that this system is controllable.
(b) Show that $\operatorname{det}(s I-A)=s^{3}+\alpha_{1} s^{2}+\alpha_{2} s+\alpha_{3}$.
(c) Find the feedback gain $K=\left[\begin{array}{lll}k_{1} & k_{2} & k_{3}\end{array}\right]$ such that the feedback law $u=-K x$ places the eigenvalues of the closed-loop system matrix $[A-B K]$ to $\{-1,-2+j,-2-j\}$.

Q14. For the pair (A, B) the controllability index ρ is defined as the smallest nonnegative integer satisfying

$$
\operatorname{rank}\left[\begin{array}{llll}
B & A B & \ldots & A^{\rho-1} B
\end{array}\right]=\operatorname{rank}\left[\begin{array}{llll}
B & A B & \ldots & A^{\rho} B
\end{array}\right]
$$

Prove that for any $\ell \geq \rho$

$$
\operatorname{rank}\left[\begin{array}{llll}
B & A B & \ldots & A^{\rho-1} B
\end{array}\right]=\operatorname{rank}\left[\begin{array}{llll}
B & A B & \ldots & A^{\ell} B
\end{array}\right]
$$

Q15. Show that the pair (A, B) is controllable if and only if the only $n \times n$ matrix X satisfying both $X A=A X$ and $X B=0$ is $X=0$. Hint: use the right and left eigenvectors of A.

Q16. Show that if the below system

$$
\dot{x}=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] x+\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right] u
$$

is controllable then so is the pair $\left(A_{22}, A_{21}\right)$.

