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Chapter 1

Discrete Stochastic Processes

1.1 Introduction

Consider observing the value of a measured quantity at times n = 1, 2, 3, . . . such that

Xn is the value measured at time n.

Ex: Starting t = 0, a temperature sensor reports a measurement every 10 minutes.

Let Xn be the measurement reported at t = 10n minutes.

Ex: An autonomous vehicle sends the GPS measurement of its location every second.

Xn is the value of the location at the nth second.

Ex: You check the price of Gold each day. Xn is the price on day n.

We want to model Xn as a random variable. But we do not want to stop at just

modeling a single value measured at a single time n: we want to consider the evolution

of the sequence of values measured at a sequence of times n = 1, 2, . . .. In other words,

we want a model for the whole process {X1, X2, X3, . . .}, so that we can make some
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computations regarding it, and make decisions such as:

• Given the vehicle’s location 3 seconds ago, what are the chances it is dangerously

close to another vehicle at the moment?

• The price of an ounce of Gold is 1963 USD today. Based on its price history over

the last six months, is it a good time to sell?

• Looking at the most recent blood test of a patient, a doctor decides whether or not

to change the dosage of their medication.

Such decisions occur all the time in daily life as well as in engineering problems.

Especially with the proliferation of the Internet of Things (IoT) technology, autonomous

driving, robotics, remote monitoring, social networking, and the fact that each of us

run applications on our devices that monitor distant phenomena and make decisions

constantly, such questions are perhaps more relevant than ever.

Definition 1 A discrete stochastic process is a sequence of random variables, {Xn},
indexed by n. Typically, n = 1, 2, . . ..

Ex: The Bernoulli process with rate p is a sequence of IID Bernoulli random variables

with parameter p:

Xi =

{
1 ,with probability p

0 ,with probability 1− p

The Bernoulli process is memoryless: Xn does not depend on the history of the process,

i.e. {Xi, i < n}, or the future, {Xi, i > n}.
In the rest, we will explore a type of stochastic process that has memory.

1.2 Introduction to Markov Chains

The Bernoulli process considered above was the simplest nontrivial case of stochastic

process, with no memory. In many real-life and engineering problems this would be a
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poor model. Consider, for example, the location of a vehicle, Xt, at times t = 1 and

t = 2. If the vehicle has finite speed, knowing X1 will give us some information about X2.

Similarly, the price of gold is not determined independently each day! It either rises or

falls from its value the previous day. The peak temperature today exhibits dependence on

not only yesterday’s peak temperature, but perhaps on the temperature of the previous

day, through the weather system that has been in effect for several days. As in these

examples, many discrete stochastic processes have memory.

In some cases, the value of the stochastic process Xn+1 at time n+ 1 depends on the

past history Xn, Xn−1, Xn−2, . . . , X0, only through the present value, Xn. We call this a

Markov Chain (MC).

Markov Chains are among the most interesting models in probability, built on the

notion of conditional probability. Here, we briefly study the topic through a sequence of

simple examples.

Ex: Suppose that if it rains today, then it will rain tomorrow with probability α, and

if it does not rain today, then it will rain tomorrow with probability β, independently of

the weather in previous days. Define a state space, S and a Markov Chain to model this

situation.

Solution: Let S = {0, 1}. Suppose we say that the process is in state 1 when it

rains and state 0 when it does not rain. Let Xn ∈ S be the state at time n. P (Xn =

0|Xn−1 = 0, Xn−2, . . . , X1} =P(Xn = 0|Xn−1 = 0) = 1 − β, and P (Xn = 0|Xn−1 =

1, Xn−2, . . . , X1} =P(Xn = 0|Xn−1 = 1) = 1− α.

Draw a pictorial representation of this 2-state Markov Chain.

Specify values for α and β such that the resulting process is a Bernoulli process.
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Ex: Burak is determined to take Calculus I until he passes the course. There is no

eviction from the undergraduate program, which means he is offered an unlimited number

of chances to take the course. However, Burak does not study at all, and does not learn

the material. So, every semester that he takes Calculus, the probability that he passes is

p, irrespective of how many times he took the course before. Let Xn be a random variable

indicating whether Burak passed the course at the end of semester n or not. Xn = 0 if

Burak fails at the end of the nth semester, and Xn = 1 otherwise.

(a) Consider possible sample paths of the process and contrast with that of a Bernoulli

process with rate p.

(b) Argue why this is NOT a Bernoulli process.

(c) Show that this process is Markov.

(d) Note that, the Bernoulli process is also a special case of a Markov Chain, but not all

binary valued Markov Chains are Bernoulli processes.

Discussion: If Burak passes on the kth attempt, we can set Xk+1 = Xk+2 = ... = 1.

Imagine a sequence of Xns that continue forever, even after Burak passes the course.

Sample paths will look like
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000011111111111111111111111...

That is, an infinite number of ones, possibly preceded by a number of zeroes.

The following follow from the description of the problem:

P (Xn+1 = 0|Xn = i,Xn−1, Xn−2, . . . , X1) = P (Xn+1 = 0|Xn = i)

=

0, if i = 1

1− p, if i = 0

and

P (Xn+1 = 1|Xn = i,Xn−1, Xn−2, . . . , X1) = P (Xn+1 = 1|Xn = i)

=

1, if i = 1

p, if i = 0

From the above, given the present value of the process, Xn, the future of the process,

Xn+1 depends only on Xn. That is, conditioned on the present, the future is independent

of the past. In other words, the process is Markov.

1.2.1 Transition Probabilities

In the above example, the probability of going from State 0 (Did not pass the course

yet) to State 1 (Done with Calculus) is

P (Xn+1 = 1|Xn = 0) = p

The probability of going from State 0 back to the same state (in other words, staying in

that state) is:

P (Xn+1 = 0|Xn = 0) = 1− p

These are called transition probabilities. When in state 1, the probability of going to state

0 is zero, hence the only possibility is a self-transition, that is, staying in state 1.

The diagram in Fig.1.2.1, summarizes the MC visually. Go ahead and mark the tran-

sition probabilities on the diagram. Note that the transition probabilities out of every

state add to 1.
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Figure 1.1: Markov Chain with one transient and one absorbing state.

In general, we define the transition probabilities1 as:

Pij = P (Xn+1 = j|Xn = i)

For i, j ∈ S. Here Pij ≥ 0 is the probability that, when in state i, the process will next

go to state j (j can be the same as i, in that case the process would simply be staying in

i). As the process must make a transition into some state, we have, for all states i,:∑
j∈S

Pij = 1

The transition probability matrix P is defined as the matrix of values {Pij} for

all i, j ∈ S. Due to the above, each row of P adds to 1.

P =



P00 P01 P02 . . .

P10 P11 P12 . . .

· · · ·
· · · ·
Pi0 Pi1 Pi2 . . . ·
· · ·
· · · ·


Ex: For the rain/no rain example above,

P =

[
α 1− α

β 1− β

]

1Our scope is limited to the case of a time-homogeneous MC.
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Ex: (Random Walk) Consider a MC whose state space is the set of integers, such

that, for some a > 0, the transitions are either to the right with probability a, or to the

”left” with probability 1− a.

Pi,i+1 = a, Pi,i−1 = 1− a

for i = 0,±1,±2, . . . Note that the above is a MC with a countably infinite state-space.

Ex: Burak finally passed Calculus I, and he is now taking Calculus II. There is a 20

percent probability that he will pass Calculus II this semester. If not, he will either take

it again next semester, or change his major, those decisions being equally likely. Every

time Burak takes Calculus, the probability of passing is 20 percent.

(a) Draw the diagram of a MC for this problem, where the states are {1, 2, 3}, corre-
sponding to taking Calculus, passed Calculus, quit. Mark the transition probabilities

(b) Let Xn be the state in Semester n, where X1 = 1, n = 1, 2, . . .. Write down the

transition probability matrix P with entries Pij = P (Xn+1 = j|Xn = i), for all

i, j ∈ {1, 2, 3}.
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Ex: (Ross, Example 4.4) Now, assume that whether or not it rains today depends

on previous weather conditions through the last two days. Specifically, suppose that if

it has rained for the past two days, then it will rain tomorrow with probability 0.7; if

it rained today but not yesterday, then it will rain tomorrow with probability 0.5; if it

rained yesterday but not today, then it will rain tomorrow with probability 0.4; if it has

not rained in the past two days, then it will rain tomorrow with probability 0.2. If we let

the states be ”rain, no rain” as before, is this a MC? If not, find a MC to represent this

process.

Solution: We can form a MC with the following 4 states:

• state 0, if it rained both today and yesterday,

• state 1, if it rained today but not yesterday,

• state 2, if it rained yesterday but not today,

• state 3, if it did not rain either yesterday or today.

Please write down the transition probability matrix accordingly.

Ex: The 2 Umbrella Problem: I own two umbrellas. At time t = 0, one is at home,

and the other is at the office. In the morning, if it is raining, I will take an umbrella with

me as I walk from home to work. In the evening, as I walk back, I will again take an

umbrella with me if it is raining. I never carry an umbrella if it is not raining. With this
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policy, I am interested in the steady-state probability of being caught in the rain with no

umbrella. Construct a MC for this process, and specify P.
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1.2.2 n-step Transition Probabilities

We denote the probability of going from i to j in n steps as P n
ij:

Definition 2

P n
ij = P (Xn+k = j|Xk = i), n ≥ 0, i, j ∈ S

Note that,

P n+m
ij =

∑
k

P (Xn+m+k = j|Xm+k = l, Xk = i)P (Xm+k = l|Xk = i),

n,m ≥ 0, i, j, l ∈ S

which implies that:

P
(n+m)
ij =

∑
k

Pm
il P

n
lj n,m ≥ 0, i, j, l ∈ S

In short,

P (n+m) = P (n)P (m)

Ex: Burak is now taking EE202. His algorithm did not change, and is expressed by

the 3-state MC represented below.

(a) Show that P (Xn+2 = j|Xn = i) is given by
∑3

k=1 pikpkj. Note that this is the product

of the ith row and the jth column of P. In other words, the probability of going from

state i to state j in two steps is given by the ijth entry of the P2 matrix. Compute

and write down the matrix P2.

(b) Argue similarly that the n step transition probabilities are given by entries of the

matrix Pn.
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Figure 1.2: Markov Chain with two absorbing states.

(c) Notice that the second and third rows of P n will always be fixed, while the first

row changes with n. Show that the first entry of the first row, P n
11 is equal to 0.4n.

Similarly, let the second entry be P n
12 = an. Observe that an = 0.4an−1 + 0.2. Let

P n
13 = bn. Observe that bn = 0.4bn−1 + 0.4.

(d) Based on the observations just made, what is the matrix P n converging to, as n

grows? Interpret the results: what is the probability that Burak will eventually pass

the course? What is the probability that he will change his major?

The above example is a Markov Chain with two absorbing states : states 2 and 3. If

we start in State 1, we will eventually leave this state and get absorbed in either state 2

or 3.

Now, we will compute the probability that Burak eventually passes EE202, through
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an alternative approach:

(a) Let a be the probability that the eventual state is passing EE202, given that we start

at time n = 1 by taking EE202: that is, a = P (limn→∞ Xn = 2|X1 = 1), and b be the

probability that the eventual state is quitting: that is, b = P (limn→∞ Xn = 3|X1 = 1).

Argue that b = 1− a.

(Hint: We have three types of sequences possible: those that hit 2 and get stuck there,

those that hit 3 and get stuck there, and those that always stay at 1. The probability

of the last kind of sequence is zero. To see this, consider the first column of the matrix

Pn computed above, and see that it converges to the all-zero vector.)

(b) Show that we can write the following equation for a:

a = 1× p12 + 0× p13 + a× p11

(Hint: Just like we found two step transition probabilities above, we can condition on

the next move we make starting from state 1, and apply the law of total probability.

P (limn→∞Xn = 2|X1 = 1) =
∑3

k=1 P (limn→∞Xn = 2|X1 = 1, X2 = k)P (X2 =

k|X1 = 1))

(c) Solve the above equation, determine the values of a and b.

Ex: Recall the 2 Umbrella Problem, where I started on the morning of day 1 with

one umbrella at each location. Suppose it independently rains each morning and evening
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with probability 0.5. Compute the probability that, on the way back home on day 2, I

am left in the rain with no umbrella.

Ex: There is an insect walking (from what I gather, randomly) on my windowsill.

Out of boredom, and in order to observe the movements of the insect better, I marked 4

equally spaced regions on the windowsill. At location 1 at the left hand corner, there is a

spider web. If the fly gets to that location, it will be captured. Upon careful observation,

I determined that the transition probabilities between locations are as in the matrix P

given below:

P =


1 0 0 0

0.3 0.4 0.3 0

0 0 0.5 0.5

0 0 0.5 0.5


(a) Given that the fly starts at location 2, what is the probability, that after 2 steps, it

is at location 4?

(b) Given that the fly starts at location 2, what is the probability, that after infinitely

many steps (in practice, after a sufficiently long time), it is observed at location 4?



METU EE306 Spring 2022 14

Ex: Random Walk with Two Thresholds: Consider a random walk on the set

of integers: The probability of moving right or left are each equal to 1/3. We stay in

place with probability 1/3. Given X0 = 0, compute the probability of the walk reaching

the value 2 before ever hitting −2.

Ex: Random Walk on a Finite Set: Now, truncate the random walk in the

previous example at -2 and 2, such that when we reach these endpoints, the probability

of staying in place is 2/3. Given X0 = 0, compute the expected number of transitions

until the walk hits 2.


