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1.2.4 Steady-state probabilities

We observe from the three examples above, that when all recurrent classes in the MC

are aperiodic, then as n → ∞ the entries of the n-step transition probability matrix

converge:

P
(n)
ij → πij

Moreover, if the MC is also irreducible (that is, there is a single recurrent class, and

possibly some transient states), these limiting values do not depend on the initial state:

πij = πj

A Markov Chain which has a single recurrent class, that is also aperiodic, is ergodic. In

this case, the limiting values {πj} are steady-state probabilities of observing each state

j. Moreover, the value πj is also equal to the long term fraction of time that state j is

visited, in each sample path.

Ex: Consider two LEDs controlled by two switches in the following way: Switch 1

toggles the state of one of the LEDs, chosen equally likely at random (For example, if

both LEDs are OFF (00), one of them will turn ON (01 or 10) when Switch 1 is flipped;

from 10 or 01, if Switch 1 is flipped, they may go to 11 or 00.) Switch 2 turns both LEDs

OFF.

Each minute, someone comes and flips one of the switches at random (each switch is

chosen with equal probability.)

(a) Let the state of the system be the number of LEDs that are ON. Draw the diagram

of a Markov Chain that models this process, and mark the transition probabilities.

(b) The P n matrix converges to a matrix π in this problem. The entries of π depend

only on the column number, not the row. That is, the probability of being in state

j after a long amount of time is a constant number, that does not depend on the

starting state i. In other words, the ijth entry depends only on i, πij = πj. (Note
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Figure 1.3: Ergodic Markov Chain for the switch flipping example: Mark the transition probabil-
ities according to the probabilities described in the problem statement. All states are recurrent.

that πij = limn→∞P (Xn = j|X1 = i).) To find these limiting probabilities, we will

apply the following logic: First, apply the Total Probability Theorem:

P (Xn = j) =
3∑

k=1

P (Xn = j|Xn−1 = k)P (Xn−1 = k)

If n is very large (large enough that steady state has been reached), than the proba-

bility of being in state k at time n should be the same as the probability of being in

state k at time n− 1. So, replace P (Xn−1 = k) by πk and P (Xn = k) also by πk, for

k = 1, 2, 3. We get a set of equations for the πjs:

πj =
3∑

k=1

πkpkj

j = 1, 2, 3. In addition to these three equations (only two of which are linearly inde-

pendent) we have another equation:

3∑
j=1

πj = 1

Solve this system of equations to find the steady-state probabilities.
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(c) Suppose, after the switches have been flipped randomly as described above many

times, I come in at a certain time. What is the probability that I see both LEDs ON?

What is the long term fraction of time that both LEDs are ON?

Figure 1.4: Ergodic Markov Chain for the switch flipping example with the transition probabil-
ities marked. All states are recurrent.

Let us summarize these observations in a theorem that we will state without proof.

Theorem 2 Consider a Markov Chain with k < ∞ states with a single recurrent class,

which is aperiodic. Then, there is a set of values 0 ≤ πj ≤ 1, such that:

[a]For each j,

lim
n→∞

P
(n)
ij = πj, ∀i

The πj are the unique solution satisfying
∑k

m=1 πm = 1 to the set of equations:

πj =
k∑

m=1

πmPmj, j = 1, 2, . . . , kS (1.1)

We can write the RHS in the above as a matrix multiplication:

π = πP

where π is the probability vector [π1π2 . . . πk].
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Remarks:

1.2.• The set of global balance equations given in (1.1) contains only m − 1 linearly

independent equations (one equation will be redundant.) Therefore, (1.1) has an

infinite number of solutions. We are looking for the unique solution that is a prob-

ability vector (i.e. satisfying the normalization
∑k

m=1 πm = 1.)

• . We have

πj = 0, for all transient states jπj > 0, for all recurrent states j

• The πj are called stationary probabilities because if the process started with

these probabilities:

P(Xo = j) = πj,∀j

Then, by the Chapman-Kolmogorov eqns,

P(X1 = j) =
∑
m

P(Xo = m)Pmj =
∑
m

πmPmj = πj,∀j

Hence at any future time the distribution of the state is the same.

Long Term Frequency of Occurrence

Suppose, every day we visit state j, we get a unit reward. Given that we start in state

i, what is the long term average reward per transition?

limn→∞
rij(n)

n

In an ergodic process, the answer is equal to the expected reward per transition (We

have to leave the proof of this intuitive result outside the scope in this course.)

limn→∞
rij(n)

n
= πj
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How about the long term frequency of transitions from j to k?

Expected frequency of a particular transition.

Balance equations:

Birth-death Chains:

Ex: Bank teller.

Mean First Passage and Recurrence Times


