1.2.3 Classification of States

Definition 3 In a MC, a state j is said to be **accessible** from state i if there is a value for $n \ge 0$ s.t. $P_{ij}^{(n)} > 0$.

A straightforward corollary of this definition is the following:

Theorem 1 If j is NOT accessible from state i, then given that the process starts in i, the probability that the process will ever enter j is zero.

Proof.

$$P(\text{ever enter } j|\text{start in } i) = \lim_{n \to \infty} P(\bigcup_{k=1}^{n} X_k = j | X_0 = i)$$
$$\leq \lim_{n \to \infty} \sum_{k=1}^{n} P(X_k = j | X_0 = i)$$
$$= \lim_{n \to \infty} \sum_{k=1}^{n} P_{ij}^{(k)}$$
$$= 0$$

Definition 4 If state j is accessible from state i and state i is accessible from state j, then i and j are said to **communicate**, denoted $i \leftrightarrow j$.

Show that, if $i \leftrightarrow j$ and $j \leftrightarrow k$, then $i \leftrightarrow k$.

If all states communicate in a MC, this MC is said to be _____

Ex: Consider the Markov Chain models for the 2 Umbrella Problem, the 202 Problem, the Spider-and-Insect Problem, and the Random Walk. Which of these chains are irreducible?

Definition 5 A state *i* is called recurrent *if*, starting *in i*, the probability of ever returning to *i* is one. Otherwise, state *i* is transient.

Properties:

- Let A(i) be the set of states accessible from i. State i is recurrent only if i is accessible from any $j \in A(i)$.
- If *i* is recurrent, the process will reenter state *i* infinitely often.
- If state *i* is transient, the total number of times that *i* is visited, until it is left for good, is a Geometric random variable (and thus it is finite with probability 1) (Why).

• If i is recurrent, then all $j \in A(i)$ are recurrent. $\{i\} \cup A(i)$ forms a recurrent class.

- In a Markov Chain with a finite set of states, not all states can be transient.
- The set of states can be partitioned as $S = T \bigcup C_1 \bigcup C_2 \ldots$ where T is the set of transient states, and $C'_i s$ are recurrent classes.

• If a finite-state MC is irreducible, it consists of a single recurrent class.

Ex: In the MC examples considered above, list transient states and recurrent classes.

Ex: Consider the random walk on the set of integers, with probability q of going to the right, and 1 - q of going to the left. Note that all states are either recurrent, or all states are transient (Why?). (For those who are interested: What is the condition for all states to be transient? There is an argument that uses the solution of the "Cliff hanger" problem).

Definition 6 Let $d_i = gcd\{n, s.t. P_{ii}^{(n)} > 0\}$. If $d_i > 1$, state *i* is periodic with period d_i . **Corollary 1** All states in a recurrent class have the same period. **Ex:** Provide examples of Markov Chains with periods 2 and 3.

Argue that, if $P_{ii} > 0$ for and $i \in S$, the MC cannot be periodic.

Ex: Consider the Markov Chain given by the following transition probability matrix:

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 1 & 0 \end{bmatrix}$$

Study P^n for several values of n. What do you observe? Do you think the entries of P^n will converge as n increases?

Ex: Now consider the Markov Chain given by the following transition probability matrix:

$$\mathbf{P} = \left[\begin{array}{cc} 0.5 & 0.5 \\ 0.2 & 0.8 \end{array} \right]$$

Study P^n for several values of n. Do you think the entries of P^n will converge as n increases? What does each column converge to?

Ex: Now consider the Markov Chain belonging to the "Taking 202" problem. Do you think the entries of P^n will converge as n increases? What does each column converge to?