$1^{\text {st }}$ Homework, Part I
Due October 9, 2009

1. Show that the Levi-Civita tensor is a scalar, although it has 3 indices, i.e. show that under a rotation,

$$
\begin{equation*}
\epsilon_{i j k} \rightarrow(\operatorname{det} \Lambda) \epsilon_{i j k}=\epsilon_{i j k} \tag{1}
\end{equation*}
$$

where Λ is the rotation matrix. Hint: First, show that Levi-Civita tensor remains completely anti-symmetric even after rotation. Then, calculate what ϵ_{123} transforms into after the rotation.
2. Simplify the following expressions such that the result contains at most on vector product.
(a) $(\vec{A} \times \vec{B}) \times(\vec{C} \times \vec{D})$
(b) $\vec{A} \times(\vec{B} \times(\vec{C} \times \vec{D}))$
(c) $(\vec{A} \times \vec{B}) \cdot(\vec{C} \times \vec{D})$
3. Show the following relations:
(a) $\vec{\nabla}(f g)=f \vec{\nabla} g+(\vec{\nabla} f) g$
(b) $\vec{\nabla}(\vec{A} \cdot \vec{B})=\vec{A} \times(\vec{\nabla} \times B)+\vec{B} \times(\nabla \times \vec{A})+(\vec{A} \cdot \vec{\nabla}) \vec{B}+(\vec{B} \cdot \vec{\nabla}) \vec{A}$ (Hint: Express both sides in terms of components and simplify)
4. (a) Calculate the line integral of $\vec{V}(x, y, z)=y \hat{z}$ along a semi circle of unit radius that starts from the point $(x, y, z)=(1,0,0)$, passes through the point $(x, y, z)=(0,1,0)$ and ends at the point $(x, y, z)=(-1,0,0)$
(b) Consider the $x>0$ portion of the sphere of unit radius. Calculate the surface integral of the function in the previous section on this surface.
(c) Calculate the volume of a sphere using Cartesian coordinates.

