1st Homework, Part I Due October 9, 2009

- 1. Let \vec{V} be a vector, with coordinates V_i in a chosen coordinate axis.
 - (a) Consider a rotation of the coordinate axis around the z axes by an angle θ in the clockwise sense. What will be the new coordinates in terms of the old coordinates? Write down a 3×3 matrix $\Lambda_z(\theta)$ such that when applied to the column matrix made of the components of V_i , it yields a column matrix made of the new coordinates, V'_i .
 - (b) For very small rotations, expand $\Lambda_z(\theta)$ around $\theta = 0$ and write $\Lambda_z = 1_{3\times 3} + i\theta \Sigma_z$. What is Σ_z ?
 - (c) Repeat the same derivation for rotations around x and y, and find the matrices Σ_x and Σ_y
 - (d) Calculate the commutation relations between Σ_i .
- 2. Consider two point charges q and -2q placed at the points (x,y,z) = (0,0,d) and (x,y,z) = (0,0,-d). (The total charge of the configuration is -q). Calculate the electric field created by these two charges at and arbitrary point given by the coordinates (x,y,z). For r >> d where r is the distance of the point from the origin, obtain an expansion of \vec{E} in terms of $\frac{d}{r}$ and keep only the terms upto the order $\left(\frac{d}{r}\right)^2$.