Phys 430 - 1st HOMEWORK

1. Discuss the following concepts (just writing formulas is not enough, use words)

Ergodic principle

Ensemble

Distribution function

Microcanonical Distribution Function

Subsystem

- 2. Consider the example we started discussing in the lecture: Suppose your throw N dice. Let d_i be the value of the i^{th} dice, and let $d = \sum_{i=1}^{N} d_i$. Let $\rho_N(x)$ be the probability that d = x for a system of N dice.
 - (a) Show that

$$\rho_N(x) = \sum_{i=1}^6 \rho_1(i)\rho_{N-1}(x-i)$$
 (1)

- (b) Calculate and sketch $\rho_3(x)$
- (c) Using a computer, draw the graph of $\frac{\rho_N(x)}{\rho_N^{max}}$ versus $\frac{x}{N}$, where ρ_N^{max} is the maximum value of $\rho_N(x)$, for N=3,4,20 and see that the probability distribution gets narrower as N increases.
- (d) Estimate the relative fluctuation of d, i.e. $\frac{\Delta f}{\langle f \rangle}$ for N=3,4, and 20
- 3. Consider two different quantum systems: system A and system B. Both of the systems can be only in two different states. If the wave function of the whole system is given by

$$\Psi = a_1 \Psi_A^1 \Psi_B^1 + a_2 \Psi_A^1 \Psi_B^2 + a_3 \Psi_A^2 \Psi_B^2 \tag{2}$$

where $|a_1|^2 + |a_2|^2 + |a_3|^2 = 1$ and Ψ_X^i (X = A, B, i = 1, 2) is the wavefunction of the i^{th} state of the X system. What is the quantum statistical matrix of system A? What is the quantum statistical matrix of system B?