PHYS 430 - SUPPLEMENTARY EXAMINATIONS FOR GRADUATION February 2007

Name and Surname: Student ID: Department: Signature:

- 1. Calculate the thermodynamical potentials F, S, E, μ , F of an ideal gas of pointlike particles confined to move in 2 dimensions on a surface A if they have the energy-momentum relation $\epsilon = \frac{p^2}{2m}$ using
 - (a) Micro Canonical Ensemble
 - (b) Canonical Ensemble
 - (c) Grand Canonicle Ensemble
- 2. Consider two small systems in contact. Show that in equilibrium:
 - (a) If the two subsytems are allowed to exchange energy, the temperatures of both systems are the same
 - (b) If both systems are seperated by a movable piston so that they exchange volume, but no other exchange is possible, the pressures of both systems are the same in equilibrium
 - (c) If the two system are seperated by a membrane which only allows the exchange of particles, then the chemical potential of both systems are the same
- 3. Consider two particles which can be only in 2 states, one with energy ϵ_1 and the other with energy ϵ_2 . If the system is at temperature T, write the partition function of the system if the particles are:
 - (a) Distinguishable particles
 - (b) Identical particles satisfying the Boltzman distribution
 - (c) Identical particles which are fermions
 - (d) Identical particles which are bosons.

In each of these cases, calculate the energy $\langle E \rangle$ of the system and the fluctuations in the energy of the system, $\langle (\Delta E)^2 \rangle$

- 4. Consider the two single particles states in a metal which have energies ϵ_i (i = 1, 2) none of which is degenerate. If the metal is at temperature T and has a chemical potential μ , what is the average number of electrons in these states? What is the relative fluctuation in the number of particles in these states?
- 5. Consider a quantum harmonic oscillator that has a frequency ω (the energy levels are given by $\epsilon_n = \hbar \omega (n + \frac{1}{2})$). If the oscillator is at temperature T, calculate its free energy F. Calculate E and C_V for this harmonic oscillator.
- 6. Consider a mixture of N_1 molecules of a diatomic ideal gas and N_2 molecules of a monatomic ideal gas. Calculate C_V , C_P and $\gamma = \frac{C_P}{C_V}$ for this mixture.
- 7. Suppose that you have a gas of N identical particles entrapped in a sphere of radius R and are subject to a potential $V = \alpha r$ where α is some constant and r is the distance from the center of the sphere. Assume that the energy of the particles is relted to the momentum through $\epsilon = \alpha p^n$.
 - (a) Calculate the density of particles as a function of the radius from the center. Properly normalize the density so that the integral of the density over the whole sphere gives N, the total number of particles.
 - (b) Calculate the partition function of the system.
 - (c) Calculate the pressure the gas exerts on the sphere surface.