
Phys 430 - Solutions to the 2nd HOMEWORK

1. How do you interpret negative temperatures? Are you convinced that
negative temperatures are hotter than positive temperatures? If yes,
why? If no, why? Show that heat always flows from negative temper-
atures to positive temperatures. (10 points)
Solution
Formally speaking, temperature is a measure of how the entropy changes
as the energy of a system is increasing. If a system has negative temper-
ature, it means that the entropy of the system decreases as its energy
is increasing. This is possible only if the system has a maximum possi-
ble energy level, and in general the maximum energy state will not be
degenerate, and hence the entropy at that energy will be zero.

From the definition of negative temperature, it is also obvious that
negative energy states are states that have larger energy than positive
energy states.

To see that heat always from from negative temperature states to pos-
itive temperature states, consider a non-equilibrium system comsisting
of a positive temperature subsytem A and a negative temperature sub-
system B. Assume that initially they have energies EA and EB respec-
tively. The total energy E = EA + EB is conserved. The total entropy
of the system will be S(E) = SA(EA) + S(B)(EB). Since the system
is not in equilibrium, as the system approaches equilibrium, the total
entropy of the system has to increase (it can not remain zero as the
process of heat flow between two reservoirs at different temperatures is
not a reversible process). Hence

d

dt
S(E) =

dSA

dEA

dEA

dt
+

dSB

dEB

dEB

dt
> 0

. Using the definition of temperature and the conservation of total
enery, i.e.

0 =
dE

dt
=

dEA

dt
+

dEB

dt

one obtains (
1

TA
− 1

TB

)
dEA

dt
> 0
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Since TA > 0, 1
TA

< 0. Subtracting a positive number from a negative
number, one still has a negative number, hence

1

TA

− 1

TB

< 0,

thus for the entropy to increase, we need to have

dEA

dt
< 0

i.e. the negative temperature system looses energy whereas the posi-
tive temperature system gains energy; i.e. heat flows from a negative
temperature system to a positive temperature system.

2. Consider an ideal gas consisting of point particles whose energy mo-
mentum relation is given by ε = cp whare c is some constant and p is
the sum of the magnitudes of the components of the momentum of the
particles; i.e. p = |px| + |py| + |pz|. For this gas, calculate:

The number of states Γ(E) that have energy less then or equal to
E (10 points)

The entropy, S, of the system (5 points)

The temperature, T , of the system (5 points)

Calculate the thermodynamic potentials E(S, V ), F (T, V ), W (S, P )
and Φ(T, P ) (10 points)

Calculate CP and CV (5 points)
Solution:
If we enclose this gas in a cube of side length L, the components of the
momenta of the ith particle is given by |pi

j| = h̄π
L

ni
j, j = x, y, z, and

the total energy of the system will be given by:

E =
ch̄π

V 1/3

N∑
i=1

(ni
x + ni

y + ni
z) (1)

where we have substituted L = V 1/3. In order to calculate Γ(E), we
need to find the number of sets of 3N integers ,{ni}, such that

ch̄π

V 1/3

3N∑
i=1

ni ≤ E (2)
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or
3N∑
i=1

ni ≤ α = E
V 1/3

ch̄π
(3)

This determines a plane in the 3N dimensional space and we need to
find the number of points under this plane that have integers for their
coordinate. As we did in the class, we can imagine unit hyper-cubes,
each having 1 for their volume, around each one of these points. These
hyper-cubes will fill the volume under the plane. Then the question
is transformed into finding the number of these unit hyper-cubes that
one can fill under the plane. But this is nothing but the total volume
under the plane devided by 1, the volume of each one of these unit
cubes. Hence Γ(E) is the volume under this hyper-plane.

The volume of this region can be obtained from the integral

A3N =
∫ α

0
dn1

∫ α−n1

0
dn2

∫ α−n1−n2

0
dn3 · · ·

∫ α−
∑3N−1

i=1
ni

0
dn3N1

We will prove that An = αn

n!
for any integer n using induction. For

n = 1,

A1 =
∫ α

0
dn1 = α =

α1

1!
,

hence our assertion is obviously true. Assume that it is true for n − 1.
Then

An =
∫ α

0
An−1(α − n1) =

∫ α

0
dn1

(α − n1)
n−1

(n − 1)!
= − (α − n1)

n

n!

∣∣∣∣∣
n1=α

n1=0

=
αn

n!
(4)

Hence, our assertion is true for any finite integer n. Thus

Γ(E) = A3N(α) =

(
EV 1/3

ch̄π

)3N
1

(3N)!N !
(5)

where we have added an extra N ! in the denominator to take into
account the fact that the particles are identical particles. From Γ(E),
one can obtain ΔΓ(E) by differentiating:

ΔΓ(E) =
∂Γ(E)

∂E
ΔE

=

(
EV 1/3

ch̄π

)3N
1

(3N − 1)!N !

ΔE

E
(6)
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and the entropy of the system becomes:

S(E) = ln ΔΓ(E) = 3N log

(
EV 1/3

ch̄π

)
− ln(3N − 1)! − ln N ! + ln

ΔE

E

= 3N log

(
EV 1/3

ch̄π

)
− 3N ln(3N) + 3N − N ln N + N

= 3N ln

(
E

N

(
V

N

)1/3 e4

c3h̄π

)
(7)

where e = 2.71828 · · · is the logarithmic base; i.e. ln e = 1. The
expression for the entropy is clearly an additive expression.

The temperature T is obtained as

T−1 =

(
∂S

∂E

)
V

=
3N

E
(8)

or E = 3NT .

Inverting the expression for entropy for the energy, we obtain

E(S, V ) = Ne
S

3N

(
N

V

)1/3 3ch̄π

e4
(9)

To obtain the free energy F (T, V ) we need to evaluate F = E − TS in
terms of temperature, T and the volume V . We have already shown
that E = 3NT . Thus we only need to express S in terms of T and V .
In the expression for entropy, substituting E = 3NT , we obtain

S(T, V ) = 3N ln

(
T
(

V

N

)1/3 e4

ch̄π

)
(10)

Thus

F (T, V ) = E(T, V ) − TS(T, V )

= 3NT − T3N ln

(
T
(

V

N

)1/3 e4

ch̄π

)

= −3NT ln

(
T
(

V

N

)1/3 e3

ch̄π

)
(11)
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To obtain W (S, P ) = E(S, P )+PV (S, P ), we first need to express the
volume V in terms of the etropy S and the pressures P . The pressure
is obtained as

P = −
(

∂E

∂V

)
S

=
1

3

E

V
(12)

or PV = E/3. Hence

W (S, P ) = E + PV = E +
E

3
=

4

3
E = 4N

(
ch̄π

e4

)3/4

e
S

3N P 1/4 (13)

To obtain Φ(T, P ), note that PV = E/3 = NT is the equation of state.
Hence

Φ(T, P ) = E − TS + PV = 3NT − TS + NT

= 4NT − T3N ln

(
T
(

V

N

)1/3 e4

ch̄π

)

= 4NT − 3NT ln

(
T
(

T

P

)1/3 e4

ch̄π

)
(14)

CV can be obtained from the expression for E in terms of the parameter
T and P , i.e. E = 3NT . Then

CV =

(
∂E

∂T

)
V

= 3N

. To calculate CP , one can use the expression for W (T, P ) = E+PV =
3NT + NT = 4NT . Hence

CP =

(
∂W

∂T

)
P

= 4N

3. Consider again the system of N non-interacting dipoles that we have
studied in the class. We had shown that if one takes only one of the
dipoles, the probabilities that it will have energy ±ε are given by

P (±ε) = Z−1e∓βε (15)
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where β = T−1. Now, take two of the dipoles.

What are the possible states that the dipoles can be found in? (5
points)

Show explicitely (showing all your work) that the probability that
these two dipoles are in the state n is given by

Pn = Z−1e−βεn (16)

where εn is the energy of the nth state and Z = e−2βε + 2 + e2βε (15
points)
Solution:
There are 4 possible states for the dipoles:

State d1 d2 Total Energy
1 ε ε 2 ε
2 ε - ε 0
3 -ε ε 0
4 -ε -ε -2 ε

Let S(N, E) be the entropy of N dipoles when they have a total energy
E. To find the required probabilities, let’s devide the N dipole system
into 2 subsystems: a subsystem A that contains the two dipoles and
have energy εn and another subsystem B that contains the remaining
N −2 dipoles and has energy E − εn. Then the probability Pn that the
subsystem A is in the state n is given by

Pn = eS(N−2,E−εn)−S(N,E) (17)

Expanding S(N − 2, E − εn) around N and E, one obtains:

S(N − 2, E − εn) = S(N, E) +
∂S

∂N
(−2) +

∂S

∂E
(−εn) (18)

and hence

ln Pn = −2
∂S

∂N
− εn

T
(19)
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and thus

Pn =
e−

εn
T(

e
∂S
∂N

)2 (20)

In the class, when we were discussing the probabilities of the single
dipole, we had calculated that

e
∂S
∂N = e−

ε
T + e

ε
T (21)

and hence

Pn = Z−1e−εn (22)

where

Z =
(
e−

ε
T + e

ε
T

)2
= e−2 ε

T + 2 + e2 ε
T (23)
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4. Express the following derivative in terms of derivatives of the equation
of state and Cp or Cv. Find processes for which each derivative is
relevant. (3 points each)(

∂E

∂P

)
T

,

(
∂W

∂V

)
T

,

(
∂E

∂T

)
P

,

(
∂W

∂P

)
T

,

(
∂W

∂T

)
V

Solution:

Using dE = TdS − PdV ,(
∂E

∂P

)
T

= T

(
∂S

∂P

)
T

− P

(
∂V

∂P

)
T

Using the fact that d(E − TS + PV ) = −SdT + V dP is a total differ-
ential, one can write: (

∂S

∂P

)
T

= −
(

∂V

∂T

)
P

,

and hence (
∂E

∂P

)
T

= −T

(
∂V

∂T

)
P

− P

(
∂V

∂P

)
T

It is relevant e.g. in a system which is similar to the Joule Thomson
process but instead of being isolated as in the JT process, the system
is in contact with a heat reservoir.

Similar to the previous case, using dW = TdS + V dP ,(
∂W

∂V

)
T

= T

(
∂S

∂V

)
T

+ V

(
∂P

∂V

)
T

. Now using the fact that d(E − TS) = −SdT − PdV is a total
differential, one sees that(

∂S

∂V

)
T

=

(
∂P

∂T

)
V

,

and hence (
∂W

∂V

)
T

= T

(
∂P

∂T

)
V

+ V

(
∂P

∂V

)
T

.
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Note that similarity with the previous result. Except than a change in
sign, the two results can be obtained from one another by exchanging
P and V consistant with the general anology between W and E, i.e.
The relation between E and V is the same as the relation between W
and P .

This is relevant in a process in which we have a gas in a piston which
is in contact with a heat reservoir.

Using dE = TdS − PdV ,(
∂E

∂T

)
P

= T

(
∂S

∂T

)
P

− P

(
∂V

∂T

)
P

= CP − P

(
∂V

∂T

)
P

where we have used

CP = T

(
∂S

∂T

)
P

.

Consider a gas enclosed in a movable piston so that the pressure is kept
constant. Then you heat the system, increasing the temperature.

Using dW = TdS + V dP , we obtain(
∂W

∂P

)
T

= T

(
∂S

∂P

)
T

+ V

and using the previous result for
(

∂S
∂P

)
T
,

(
∂W

∂P

)
T

= −T

(
∂V

∂T

)
P

+ V

The same process as in the first derivative: a JT process in contact
with a heat reservoir.

Using dW = TdS + V dP , we obtain(
∂W

∂T

)
V

= T

(
∂S

∂T

)
V

+ V

(
∂P

∂T

)
V

= CV + V

(
∂P

∂T

)
V

where we have used

T

(
∂S

∂T

)
V

= CV

The same as the third derivative but this time instead of a movable
piston, we consider a gas enclosed in a fixed volume.
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5. Consider a system whose equation of state is given by

(
P + a

N2

V 2

)
(V − Nb) = NT

for some positive constants a and b (this is called the Van der Waals’
equation of state). For this system

Calculate the derivatives (
∂E

∂V

)
T

and (
∂E

∂T

)
V

. (10 points)

By integrating you results, find E(V, T ) for this system upto a
constant. (10 points)

In the limit V → ∞, the van der Waals’ equation of state reduces
to the ideal gas equation of state. The energy of the Van der Waals’ gas
in this limit also reduces to the energy of the ideal gas. By considering
this limit, and comparing the energy with the energy of the ideal gas,
fix the constant in the expression for the energy of the Van der Waals’
gas.(bonus: 10 points)
Solution:
By definition (

∂E

∂T

)
V

= CV

. For the other derivative, using dE = TdS − PdV , we can write

(
∂E

∂V

)
T

= T

(
∂S

∂V

)
T

− P (24)

Using the Maxwell relation

(
∂S

∂V

)
T

=

(
∂P

∂T

)
V

(25)

10



one obtains (
∂E

∂V

)
T

= T

(
∂P

∂T

)
V

− P (26)

Differentiating the Van der Waals equation of state with respect to T
at constant V , one obtains

(
∂P

∂T

)
V

(V − Nb) = N (27)

or (
∂P

∂T

)
V

=
N

V − Na
(28)

Substituting, we obtain

(
∂E

∂V

)
T

=
NT

V − Na
− P

= a
N2

V 2
(29)

Integrating the results with respect to V at constant T , we obtain

E(V, T ) = −a
N2

V
+ f(T ) (30)

where f(T ) is a yet unknown function of T only. For a given T , since
the gas should become and ideal gas in the limit V → ∞ at constant
T and N , we have

Eideal gas(T ) = lim
V →∞

E(V, T ) = f(T ) (31)

and hence f(T ) = 3
2
NT . Thus for the Van der Waals gas

E(V, T ) =
3

2
NT − a

N2

V
(32)
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