
Phys 430 - 3rd HOMEWORK

1. Describe the following concepts using your own words. (Do not write
equations or copy the explanation in some book):

(a) Le Chaterlier’s Principle
Solution:
If a system is disturbed by some change in the external condition,
the system will behave in such a way as to reduce the effect. For
example, if the system is heated, there will be processes in the
system that will reduce the temperature.

(b) Nernst’s theorem
Solution:
Is the theorem that states that the entropy of any system is zero
at absolute zero, T = 0K. In classical thermodynamics, entropy
is defined up to an additive constant. This theorem states that
the entropy of any system at absolute zero is a univeral constant
which can be set to be zero.

(c) Microcanonical Distribution
Solution:
If one considers the evolution of a closed system, the average of
any macroscopic property of the system can be defined as a time
average over a sufficiently long time. It is also possible to take
many copies of the same system at different times and consider
the average over all these copies at a single instant. This set of
the system is called the Microcanonical ensemble, and their dis-
tribution in phase space is called the microcanonical distribution.
The energy, linear momentum and angular momentum of all the
copies in the ensemble is the same and hence the distribution is
zero at any point in phase space that does not have these fixed
values of energy an momentum. In microcanonical ensemble, it
is also assumed that the distribution has the same constant value
at the points where it is not zero, hence the probability of the
system to be in any state consistant with the initial energy, linear
momentum and angular momentum is constant.

(d) Positiveness of CP and negativeness of
(

∂P
∂V

)
X

, X = S, T

Solution:
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The entropy of a system at in equilibrium is a maximum, not just
a minimum. Hences, besides requiring the first derivatives of the
entropy to be zero in equilibrium, it is also necessary that the
second derivatives satisfy certain inequalities, so that it will be a
maximum. These inequalities imply that

(
∂P
∂V

)
X

> 0, X = S, T

and that CV > 0. Since CP > CV , it is also true that CP > 0

2. Consider the question in the second homework which we could not solve
using microcanonical ensemble: Consider an ideal gas enclosed in a
volume V and consisting of N point particles whose energy momentum
relation is given by ε = cp whare c is some constant and p is the
magnitude of the momentum of the particles. For this gas, calculate:

(a) Calculate the velocity distribution for a single particle.
Solution:
The momentum probability distribution is:

dw(�p) = Ae−βK(p)d3p (1)

where A is fixed by the normalization condition, i.e. 1 =
∫

dw(p)
and K(p) = E(p) = cp since there is no potential energy. Since
we will be interested not in the direction but on the mangitude of
the momentum, we can integrate over the direction to obtain the
magnitud distribution. Using d3p = p2dpdΩ where dΩ = sin θdθdφ
is the solid angle and integrating over the angles, we obtain:

dw(p) = A4πe−βcpp2dp (2)

substituting p = mv, one obtains the velocity distribution:

dw(v) = Am34πe−βcmvv2dv (3)

The normalization condition gives the value A = c3

8πT 3 for the
constant A and hence the velocity distribution for a single particle
is:

dw(v) =
c3m3

2T 3
e−βmcvv2dv (4)
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(b) Calculate the average energy for a single particle
Solution:
The average energy for a single particle is given by

〈E〉 =
∫

Edw(�p) = mc
∫ ∞

0
vdw(v) = mc

c3m3

2T 3

∫ ∞

0
dvv3e−βmcv

= mc
c3m3

2T 3

6T 4

m4c4
= 3T (5)

(c) Calculate CV for N particles
Solution:
For N particles, the energy of the system is, using the result of
the previous part, E = N(3T ) = 3NT . Then

CV =

(
∂E

∂T

)
V

= 3N (6)

(d) Calculate the thermodynamic potentials F , E, W , Φ and Ω for
the system
Solution:
In the class we had shown that the free energy F for a system of
N non interacting particles can be written as:

F = −NT ln
eZ1

N
(7)

where Z1 is the partition function of a single particle:

Z1 =
∑

allstates

e−βEn

=
∫

d3pd3q

(2πh̄)3
e−βcp

=
V

(2πh̄)3

∫
p2dpdΩe−βcp

=
V

8π3h̄34π
T 3

c3

=
V T 3

2π2c3h̄3 (8)

And hence the free energy F is given by:

F = −NT ln
eT 3V

2π2c3h̄3N
(9)
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The the entropy is the negative of the derivative of F with respect
to T and constant N and V :

S = −
(

∂F

∂T

)
V,N

= N ln
eT 3V

2π2c3h̄3N
+ 3N = −F

T
+ 3N (10)

and hence the energy is:

E = F + TS = 3NT (11)

consistant with the result of the previous section.

The pressure is the negative derivative of the free energy F with
respect to V at constant T and N :

P = −
(

∂F

∂V

)
T,N

=
NT

V
(12)

and hence the heat function is:

W = E + PV = 3NT + NT = 4NT (13)

The free energy Φ is defined as Φ = F + PV and hence

Φ = −NT ln
eT 3V

2π2c3h̄3N
+ NT

= −NT ln
T 3V

2π3c3h̄3N
(14)

The theromodynamical potential Ω is defined as Ω = F −μN and
hence we need the chemical potential μ. The chemical potential
is defined as the derivative of F with respect to N at constant T
and V :

μ =

(
∂F

∂N

)
T,V

= −T ln
eT 3V

2π2c3h̄3N
+ T = −F

N
+ T (15)

Hence

Ω = F − μN = −NT = −PV (16)
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(e) What is the chemical potential for this system?
Solution:
The chemical potential is calculated in the previous section as:

μ =

(
∂F

∂N

)
T,V

= −T ln
eT 3V

2π2c3h̄3N
+ T = −T ln

T 3V

2π2c3h̄3N
(17)

3. Consider two objects with heat capacities C1 and C2 at temperatures
T1 and T2 < T1 respectively.

(a) If the two object are brought into direct contact, heat will flow
from the hotter to the colder object until equilibrium is estab-
lished. (This will not be a reversible process) What will be the
temperature in equilibrium?
Solution:
Let T be the final temperature of the system. When the system
reaches equilibrium, both systems will have the same temperature
T . The heat released by the hot object during this time would be:
Qreleased = C1(T1 − T ) and the heat absorbed by the cold object
will be Qabsorbed = C2(T − T2). The absorbed heat by the cold
object has to be equal to the heat release by the hot object and
hence C2(T − T2) = C1(T1 − T ). Solving for T , one obtains for
the equilibrium temperature:

T =
C1T1 + C2T2

C1 + C2
(18)

(b) If the two systems are brought to equilibrium using a reversible
process. What is the maximum work that can be extracted from
the system?
Solution:
Let the equilibrium temperature be Teq. Then the total heat re-
leased by the hotter system will be Qreleased = C1(T1 − T ), the
heat absorbed by the colder system will be Qabsorbed = C2(T −T2)
and the work done will be Wmax = Qreleased −Qabsorbed = (C1T1 +
C2T2) − (C1 + C2)Teq.

To achieve equilibrium through a riversible process, one can use
infinitesmall Carnot cycles that take dQ1 amount of heat from
the hot object, do dW = dQ1η amount of work and dump dQ2
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amount of heat to the colder reservoir. For the process to be an
equilibrium process, we need to have

dS1 + dS2 = −dQ1

T1

+
dQ1

T2

= 0 (19)

Note that the temperatures T1 and T2 appearing here are the
instanteneous temperatures when the heat is taken by the Carnot
cycle and the minus sign in front of dQ1 is due to the fact the dQ1

is the heat released by the system.

Using dQ1 = −C1dT1 (again the minus sign is due to the fact the
dQ1 is the heat released) and dQ2 = C2dT2 one obtains:

−C1
dT1

T1
= C2

dT2

T2
(20)

Integrating both sides from their initial values to the their final
values:

−C1

∫ Teq

T1

dT1

T1

= C2

∫ Teq

T2

dT2

T2

(21)

Integrating the integrals and solving for Teq, one obtains for the
equilibrium temperature:

Teq = T
C1

C1+C2
1 T

C2
C1+C2
2 (22)

and hence the maximum work becomes:

Wmax = (C1T1 + C2T2) − (C1 + C2)T
C1

C1+C2
1 T

C2
C1+C2

2 (23)

(c) In the last case, what will be the equilibrium temperature?
Solution:
The equilibrium temperature is already evaluated in the last part:

Teq = T
C1

C1+C2
1 T

C2
C1+C2
2 (24)

4. Consider a gas enclosed in a cylinder of radius R. What would be the
density profile of this gas if the cylinder is rotated at a constant angular
frequency Ω around its axis of symmetry? (Hint: in the reference frame
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in which the cyclinder is at rest, the effects of rotation can be mimicked
by an external potential of the form: U(r) = −1

2
mΩ2r2 where r is the

distance from the central axis)
Solution:
The density profile dos not change if one changes the frame of reference.
And hence consider the non-inertial referance frame rotating with the
cylinder. In this reference fram, the cylinder is at rest but there is a
pseudo potential energy. The position distribution of the particles is
given by:

dw(�q) = Ae−βU(q)d3q = Ae
mΩ2

2T
r2

(25)

The constant A is fixed by the normalization, but for this problem, the
exact value is not relevant for us.

The density of particles at a given point is proportional to the proba-
bility that you will find a particle at that point. Hence, the density at
the point �q would be given by:

ρ(�q) = ρ0e
mΩ2

2T
r2

(26)

where ρ0 is the density of the particles along the axis of the cylinder
and r = |�q|.
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