
PHYS 430 - First Midterm SOLUTIONS

1. Comment on the following concepts (Just writing equations will not
gain you any points): (3 points each, 21 points total)

(a) Negative Temperatures
Solution:
Temperature is a measure of how entropy increases as the energy
of the system increases. Hence negative temperature just means
that the entropy of the system decreases as the energy of the
system it increasing. This is possible only if the energy of the
system is bounded from above. Negative temperature systems
are hotter than positive temperature systems in the sense that
if you bring into contact a system with negative temperature and
another system with pisitive temperature, heat flows from negative
temperatures to positive temperatures.

(b) Micro canonical Distribution
Solution:
In micro canonical distribution it is assumed that the probabil-
ity of the system to be in a state which satisfies the constraints
imposed on the system such as the total energy, linear and an-
gular momentum, is constant. That is if you consider two states
that have the same energy and momentum, the probability that
the system will be in any one of these states is the same. This is
called micro canonical distribution.

(c) P-V Diagram
Solution:
P-V space is the plane which has P as one of the axis and V as
the other axis. If a system is in mechanical equilibrium, it has a
definite pressure and volume at each instant. Hence any process
which results in the change of P and/or V or the system will
correspond to a trajectory in the P-V diagram.

(d) Thermodynamical Potential
Solution:
Thermodynamical potentials such as the free energies, the heat
function, energy, entropy, etc, are functions that contain all the
information about the system. By differentiating the thermody-
namical potentials it is possible to obtain the macroscopic prop-
erties of a given system and also starting from any one of the
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thermodynamical potentials, it is possible to obtain all the oth-
ers.

(e) Reversible process
Solution:
A reversible process is a process in which the entropy of the whole
system remains constant. By applying the operations in reverse
order, one can trace back the process and come back to the initial
state.

(f) Ergodic Hypothesis
Solution:
Ergodic hypothesis is the assumption that the system will come
close to any point in phase space that is consistant with the con-
straints imposed on the system infinitely many times. And the
density of the trajectory will be uniform.

(g) Entropy
Solution:
Mathematically, entropy is the logarith of the number of states
that the system can be found it. It measures the disorder of
a system and the lack of our knowledge about the state of the
system. If one considers a closed system, the entropy of the closed
system will always increase or at most remain constant.

2. Consider a gas of identical particles confined to move only on the surface
of a rectangular area of side length L. The energy momentum relation
for the particles is given as ε = α(p2

x + p2
y) where px and py are the

components of the momenta along two perpendicular directions on the
surface and α is some constant. Calculate the entropy of this system
if the system has energy E. (10 points). Calculate the temperature,
T (5 points), of the system and the surface tension σ(5 points) of the
system. (Hint: For a two dimensional system, dE = TdS − σdA where
dA is a differential change of the area of the system and σ is called the
surface tension) (20 points)
Solution:
Just like the 3D case, we will first calculate Γ(E), the number of states
that have the energy less then or equal to E. The energy of a state is
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given by the 2N positive integers ni
x, n

i
y as:

E = α
h̄2

L2

N∑
i=1

(ni2
x + ni2

y ) (1)

Using the same reasoning as in the 3D case, Γ(E) is proportional to

the volume of the 2N dimensional sphere with radius R =
√

EA
αh̄2 where

A = L2:

Γ(E) =
1

N !

1

22N
volume of sphere

=
1

N !22N

∫
d2Nxθ(R − r)

=
1

N !22N

∫ R

0
drr2N−1

∫
dΩ2N

=
1

N !22N

2πN

(N − 1)!

R2N

2N

=
1

N !2

(
EπA

4αh̄2

)N

(2)

where in the first line, the factor 1/N ! is to take into account the
fact the that particles are identical, and the factor 1/22N is included to
consider the volume of only part of the sphere where all the coordinates
are positive (since ni

x, n
i
y > 0)

Once Γ(E) is known, ΔΓ(E) can easily be obtained:

ΔΓ(E) =
∂Γ(E)

∂E
ΔE

=
1

N !(N − 1)!

(
EπA

4αh̄2

)N ΔE

E
(3)

The entropy is obtained by taking the logarithm os ΔΓ(E):

S = log ΔΓ(E)

= N log
EπA

4αh̄2 − 2 log N ! + log
ΔE

E

= N log
(

π

4αh̄2

(
E

N

)(
A

N

)
e2
)

(4)
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where in order to obtain the last equality, Stirling’s approximation is
used and terms negligible compared to N are neglected.

In order to obtain the temperature, we need to differentiate S w.r.t.
E:

T−1 =
∂S

∂E
=

∂

∂E
(N log E + · · ·) =

N

E
(5)

where · · · are terms in entropy that do not depend on E and hence go
to zero after differentiation. Hence:

T =
E

N
(6)

Since dE = TdS − σdA, dS = 1
T
dE + σ

T
dA. Hence

σ = T

(
∂S

∂A

)
E

(7)

Using the result for the entropy, we have:

σ = T
∂

∂A
(N log A + · · ·) =

NT

A
(8)

where in this expressions, · · · stand for terms that do not depend on A.

3. Consider a Carnot’ cycle that uses the Van Der Waals gas as the work-
ing gas. Show explicitly that the efficiency of this Carnot’ cycle is given
by η = 1 − Tcold

Thot
. In order to show this you need to go through several

steps: (61 points)

(a) First you need to calculate the adiabatic curve for the Van der
Waals gas. To calculate the adiabatic curve, consider the deriva-
tive (

∂V

∂T

)
S

First change your variables to (V, T ) from (S, T ) and obtain the
relation between the volume and temperature in an adiabatic pro-
cess. Then substituting T from the Van der Waals equation of
state, show that in an adiabatic process:

(V − Na)5/3

(
P + a

N2

V 2

)
= const
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(15 points)
Solution:

(
∂V

∂T

)
S

=
∂(V, S)

∂(T, S)
=

∂(V, S)/∂(V, T )

∂(T, S)/∂(V, T )

=
(∂S/∂T )V

− (∂S/∂V )T

(9)

Using the Maxwell relation,

(
∂S

∂V

)
T

=

(
∂P

∂T

)
V

(10)

and the definition of CV :

CV = T

(
∂S

∂T

)
V

(11)

one obtains: (
∂V

∂T

)
S

= − 1

T

CV

(∂P/∂T )V

(12)

Differentiation the given equation of state with respect to T at
constant volume, one obtains:

(
∂P

∂T

)
V

(V − Nb) = N (13)

or (
∂P

∂T

)
V

=
N

V − Nb
(14)

Moreover, from the expression for the energy of the Van der Walls
gas,

CV =

(
∂E

∂T

)
V

=
3

2
N (15)
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and hence(
∂V

∂T

)
S

= − 1

T

3

2
N

(V − Nb)

N
= −3(V − Nb)

2T
(16)

In terms of the differentials in an adiabatic process, we have

dV

V − Nb
= −3

2

dT

T

d ln(V − Nb) +
3

2
d lnT = 0

d ln
[
(V − Nb)T

3
2

]
= 0 (17)

Hence, in an adiabative process, for the Van der Waals Gas,

(V − Nb)T
3
2 = const (18)

Expression T in terms of P and V using the equation of state:

(V − Nb)
5
2

(
P + a

N2

V 2

) 3
2

= const (19)

or taking the 2/3rd power, we obtain:

(V − Nb)
5
3

(
P + a

N2

V 2

)
= const (20)

which concludes our derivation of the adiabatic equation for the
Van der Waals’ gas.

(b) Draw the P-V diagram for the Carnot cycle. (5 points)
Solution:
The P-V diagram for the Carnot cycle using the Van der Waals’
gas is qualitatively similar to the carnot cycle that uses the ideal
gas.

(c) Calculate the work done on the gas, the heat absorbed by the gas,
and the change in the internal energy of the gas for each of the
4 stages of the Carnot cycle. (You need to calculate 3 × 4 = 12
results. 3 points each of the results (36 points)
Solution:
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i. The 1 → 2 process:
This part of the cycle is an isothermal process and hence we
can use the equation of state to calculate the work done during
this process:

W12 =
∫ V2

V1

−PdV = −
∫ V2

V1

(
NT1

V − Nb
− a

N2

V 2

)
dV

= −
(
NT1 ln(V − Nb) + a

N2

V

∣∣∣∣∣
V =V2

V =V1

= −NT1 ln
V2 − Nb

V1 − Nb
− aN2

(
1

V2
− 1

V1

)

(21)

Since the internal energy of the Van der Waals gas depend
also on its volume, during the process, the internal energy of
the Van der Waals’ gas changes by:

ΔE = −aN2Δ
1

V
= −aN2

(
1

V2
− 1

V1

)
(22)

The amount of heat absorbed by the system during this pro-
cess is then

Q12 = ΔE − W12 = NT1 ln
V2 − Nb

V1 − Nb
> 0 (23)

Hence during this process, the system absorbes heat.

ii. The 2 → 3 process
This part of the cycle is adiabative, and hence there is no heat
exchange: Q23 = 0. The work done during this process is:

W23 = ΔE = Δ

(
3N

2
T − a

N2

V

)

=
3N

2
(T2 − T1) − aN2

(
1

V3
− 1

V2

)
(24)

iii. The 3 → 4 process:
The calculation of this process is the same as the 1 → 2
process, with the replacements: V1 → V3, V2 → V4, T1 → T2
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since the starting point in this process is the point 3 and the
final point is the point 4. Hence:

W34 = −NT2 ln
V4 − Nb

V3 − Nb
− aN2

(
1

V4

− 1

V3

)

ΔE = −aN2Δ
1

V
= −aN2

(
1

V4
− 1

V3

)

Q34 = ΔE − W34 = NT2 ln
V4 − Nb

V3 − Nb
< 0 (25)

Hence, during this stage, the system releases heat to the cold
reservoir.

iv. The 4 → 1 process:
The calculations of this process is the same as the 2 → 3
process with the replacement: V2 → V4, V3 → V1, T1 →
T2, T2 → T1. Hence:

Q41 = 0

W41 = ΔE =
3N

2
(T1 − T2) − aN2

(
1

V1
− 1

V4

)
(26)

(d) Calculate the efficiency (5 points)
Solution:
In order to calculate the efficiency, we need the total heat absorbed
and the net work done by the system. The net work done can be
obtained either by summing the works done in each stage of the
process, i.e. W = W12+W23+W34+W41, or from the conservation
of energy W = Qabsorbed − Qreleased. where Qabsorbed = Q12 =
NT1 ln V2−Nb

V1−Nb
and Qreleased = −Q34 = NT2 ln V3−Nb

V4−Nb
where the −

sign is due to the fact the Q34 is negative. Then the efficiency is:

η =
W

Qabsorbed
= 1 − Qreleased

Qabsorbed

= 1 − T2

T1

ln V3−Nb
V4−Nb

ln V2−Nb
V1−Nb

(27)

To simplify the ration of the logarithms, note that the points 2
and 3 lie on the same adiabatic curve and hence

(V2 − Nb)T
3
2

1 = (V3 − Nb)T
3
2

2 (28)
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and similarly the points 1 and 2 lie on the same adiabatic curve
and hence

(V1 − Nb)T
3
2

1 = (V4 − Nb)T
3
2

2 (29)

Deviding both equations side by side, one obtains:

V2 − Nb

V1 − Nb
=

V3 − Nb

V4 − Nb
(30)

that is the arguments of the logarithms appearing in the efficiency
are the same, and hence they cancel. Thus

η = 1 − T2

T1
(31)

as it should be.

(Hint: The Van der Walls equation of state is(
P + a

N2

V 2

)
(V − Nb) = NT

and the energy of a Van der Waals gas can be written as:

E =
3

2
NT − a

N2

V

)

4. Calculate the rate of change of the temperature of a Van der Waals’
gas undergoing a Joule Thompson process. (Hint: a Joule Thompson
process is a process that changes the pressure of the gas keeping the
heat function constant). The relevant information about the Van der
Waals gas is given in the previous problem.
Solution:
The rate of change of the temperature is given by the derivative:(

∂T

∂P

)
W

(32)

Using the Jacobian matrices, this can be written as:(
∂T

∂P

)
W

=
∂(T, W )

∂(P, W )
=

∂(T, W )/∂(T, V )

∂(P, W )/∂(T, V )
(33)
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Let’s study the numerator and the denominator seperately: The nu-
merator can be written explicetly as:

∂(T, W )

∂(T, V )
=

(
∂W

∂V

)
T

= T

(
∂S

∂V

)
T

+ V

(
∂P

∂V

)
T

(34)

where we have used dW = TdS + V dP . Using the Maxwell relations,
this can be rewritten as:

∂(T, W )

∂(T, V )
= T

(
∂P

∂T

)
V

+ V

(
∂P

∂V

)
T

(35)

In the third problem we had already obtained in Eq. (14) that

(
∂P

∂T

)
V

=
N

V − Nb
(36)

In order to evaluate the derivative
(

∂P
∂V

)
T
, we need to differentiate equa-

tion of state w.r.t volume at treating temperature as a constant to
obtain [(

∂P

∂V

)
T

− 2a
N2

V 3

]
(V − Nb) +

(
P + a

N2

V 2

)
= 0 (37)

or (
∂P

∂V

)
T

= −P + aN2

V 2

V − Nb
+ 2a

N2

V 3

= − NT

(V − Nb)2
+ 2a

N2

V 3
(38)

Substituting in Eq. (35), we obtain:

∂(T, W )

∂(T, V )
= − N2bT

(V − Nb)2
+ 2a

N2

V 2
(39)

The denominator of Eq. (32) can be written as:

∂(P, W )

∂(T, V )
=

(
∂P

∂T

)
V

(
∂W

∂V

)
T

−
(

∂W

∂T

)
V

(
∂P

∂V

)
T

(40)
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Substituting

(
∂W

∂V

)
T

= T

(
∂P

∂T

)
V

+ V

(
∂P

∂V

)
T

(41)

and (
∂W

∂T

)
V

= CV + V

(
∂P

∂T

)
V

(42)

Eq. (40) reduces to

∂(P, W )

∂(T, V )
= T

(
∂P

∂T

)2

V

− CV

(
∂P

∂V

)
T

(43)

Substituting Eqs. (15), (14)and (38) into Eq. (43) we obtain:

∂(P, W )

∂(T, V )
=

5

2

N2T

(V − Nb)2
− 3a

N3

V 3
(44)

Hence the rate of change of the temperature of a Van der Waals’ gas
in a JT process is:

(
∂T

∂P

)
W

=
− N2bT

(V −Nb)2
+ 2aN2

V 2

5
2

N2T
(V −Nb)2

− 3aN3

V 3

� −2b

5
+

4a

5T
+ O(

N

V
) (45)

Note that, when a = 0 = b, i.e. the gas is an ideal gas, the temperature
does not change, a result that we had obtained in the class for the ideal
gas.
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