## PHYS 430 - Make-Up EXAM 29 MAY 2006

## Name and Surname: Student ID: Department: Signature:

1. (12 points)

Fill in the blanks in the following statements with  $T, V, \mu, E, N$  such that the statements are true: (12 points)

- (a) In the canonical ensemble, \_\_\_\_\_, \_\_\_\_, and \_\_\_\_\_, and \_\_\_\_\_, are fixed whereas \_\_\_\_\_\_ is fluctuating.
- (b) In the grandcanonical ensemble, \_\_\_\_\_\_, \_\_\_\_\_, and \_\_\_\_\_\_ are fixed and \_\_\_\_\_\_ and \_\_\_\_\_\_ and \_\_\_\_\_\_
- (c) In the microcanonical ensemble, \_\_\_\_\_, and \_\_\_\_\_, and \_\_\_\_\_, are fixed.

## 2. (10 points)

Consider an engine that works by extracting heat from the ocean and converting that heat into work. Is it possible? Explain. (10 points)

3. (30 points)

Consider a reversible engine that has the PV diagram shown in the figure. The engine uses a monatomic ideal gas as its working substance. In each of the parts of the processes  $(a) \rightarrow (b)$ ,  $(b) \rightarrow (c)$  and  $(c) \rightarrow (a)$ , calculate the heat absorbed, heat released, work done (20 points). Calculate the net efficiency of the engine (10 points).



4. (40 points)

The energy momentum expression  $\epsilon = \frac{p^2}{2m}$  is the first term in the expansion of the relativistic expression  $\epsilon = \sqrt{p^2c^2 + m^2c^4} - mc^2$ . For larger momenta, one needs to take into account higher order terms in the expansion. Including the first correction, the energy becomes

$$\epsilon = \frac{p^2}{2m} - \frac{p^4}{8m^3c^2} \tag{1}$$

Consider a gas of point like particles that have the energy momentum relation given by Eq. (1). If the gas is enclosed in a volume V and is at a temperature T, calculate the correction to the free energy, F of the gas due to relativistic effects. Assume that the relativistic correction is small(20 points). What is the correction to the pressure(10 points) and the specific heat  $C_V(10 \text{ points})$ 

5. (10 points) (10 points)

Consider the subsystem of electrons in a metal that are in the  $i^{th}$  state which has the energy  $\epsilon_i$ . Calculate  $\Omega$  and P of this subsystem if the temperature and the chemical potential of the metal is T and  $\mu$  respectively. What is the average number of electrons in this subsystem in terms of T and  $\mu$ ?

You can use the following formulas/definitions without deriving them:

$$\begin{split} dE &= TdS - PdV + \mu dN \\ dF &= -SdT - PdV + \mu dN \\ dW &= TdS + VdP + \mu dN \\ d\Phi &= -SdT + VdP + \mu dN \\ F &= E - ST \; ; \; W = E + PV \; ; \; \Phi = E - ST + PV \\ S &= \ln \Delta \Gamma(E) \; ; \; \Delta \Gamma(E) = \Delta E \frac{\partial}{\partial E} \Gamma(E) \\ \ln N! &\simeq N \ln N - N \\ \int_0^\infty dx x^n e^{-\gamma x} &= \frac{n!}{\gamma^{n+1}}, \quad \int_0^R d\rho \rho e^{-\alpha \rho} = \frac{1}{\alpha^2} \left[ 1 - (1 + \alpha R)e^{-\alpha R} \right] \\ \beta &= \frac{1}{T}, \quad k = 1 \\ e^x &\simeq 1 + x, \; x << 1; \; \sum_{n=0}^\infty x^n = \frac{1}{1-x}; \; \sum_{n=0}^\infty \frac{x^n}{n!} = e^x \\ d^3w &= w^2 dw \sin \theta d\theta d\phi, (0 < w < \infty, \; 0 < \theta < \pi, \; 0 < \phi < 2\pi) \end{split}$$

For anything else, you need to derive it.