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1. For bosonic and fermionic gases, we have obtained the first correction
to the equation of state, and we have shown that

PV = NT

(
1 ± A

V

N

)

where A is some positive constant and + sign corresponds to fermions
and the − sign corresponds to bosons. That is, the pressure of a
fermion gas is higher than the pressure of the classical gas which is
higher than the pressure of a boson gas. Explain this result in terms
of exchange effects of identical particles. (10 points)

2. When we were discussing the fermionic and bosonic systems, the occu-
pation number of a state which has energy ε approached the classical
maxwell distribution when eβ(ε−μ) >> 1 for both the fermions and the
bosons. What does this limit correspond to physically for bosons and
for fermions? How should you adjust the external parameter in order
to obtain this limit? (For example, for a real gas, we know that it
approaches the ideal case when we rarefy the gas.) (For a given sys-
tem, since you don’t have control over which level the particles should
go, saying that energy should be large is not something that we have
control of.) (20 points)

3. Consider a degenerate gas (i.e. at T = 0) of fermions. Suppose that
the relation between the momentum and the energy of the fermions
is given by ε = cp where p is the magnitude of their momenta. (This
energy relation corresponds to ultra relativistic particles for which the
rest mass energy can be neglected.) Calculate the pressure of this gas
and express you result in terms of V , N , h̄ and c. (20 points)

4. Consider a classical gas which has the energy momentum relation ε =
cp where p is the magnitude of the momentum. Calculate the free
energy F , the entropy S, the energy E and the specific heat at constant
pressure cP for this gas. (20 points)

5. Let us consider a hypothetical system defined as follows: Consider the
corners of a square, and denote them A, B, C, and D. A is the top
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left corner, B is the top right corner, C is the bottom right corner and
D is the bottom left corner. Suppose that each corner can be assigned
a number nX = ±1 (X = A, B, C, or D) randomly. Each different
assignment to the numbers nX defines a state of the system. We will
define the energy of the system as

E = −ε
∑

<XX′>
nXnX′

where < XX ′ > means that X and X ′ are corners that lie at the end
of the same side. In other words, consider each one of four sides of
the square. If, the corners connected by this side have the same num-
ber, subtract ε from the energy, if they have different numbers, then
add ε to the energy. (Physically, you can think of 4 electrons sitting
at the corners of the square. Their spin can be pointing either up,
corresponding to assigning +1 to that corner, or pointing down, corre-
sponding to assigning −1 to that corner. And here, we are considering
only nearest neighbor spin interactions). Suppose that the system is
in contact with a heat reservoir at a temperature T . (50 points)

a) Write down all possible assignment of numbers to the corners,
in Table 1 using the first four columns, i.e. write all possible states
that the system can be in. You should have 16 different possible as-
signments. For each state, calculate the energy and the sum of the
numbers assigned at each corner and write them in the fifth and sixth
columns of the same table. (5 points)

b) Fill Table 2. The first column is the possible energy values that
the system can have, i.e. distinct values that you have on the fifth
column of Table 1. The second column, degeneracy, is the different
number of ways that the system can have that energy, i.e. the number
of times that energy appears on the fifth column of Table 1. (5 points)

c) Calculate the partition function Z =
∑

states e−βEs and obtain
the free energy F = −T ln Z for the system. (5 points)

d) Calculate the average of the sum of the numbers, i.e. 〈∑ nX〉
that is of the sixth column of Table 1. (Note that, different states
having the same energy might have different

∑
nX .) (5 points)

e) Now, let’s add another term to the energy so that the total
energy now reads:

E′ = −ε
∑

<XX′>
nXnX′ − α

∑
X

nX (1)
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i.e. subtract α from the energy for each corner which is assigned +1
and add α to the energy for each corner assigned −1. In the seventh
column in Table 1, write the new energies for each of the states. (In
the spin analogy to this system, this additional term corresponds to
an external magnetic field.) And fill Table 3, with the distinct energy
levels and their corresponding degeneracies (similar to Table 2). (5
points)

f) Show that <
∑

nX >= −T ∂
∂α lnZ (5 points)

g) Calculate the partition function and obtain <
∑

nX > as a
function of ε, α and T . First take the limit T → 0 and then take the
limit α → 0 (10 points)

h) When you take the limit α → 0, your modified system returns to
the original system (if you consider the α term as a perturbation, you
are turning of the perturbation, or, in the spin analogy, you are turning
off the external magnetic field). The results that you obtain in part
(d) using the original system directly, and the result that you obtain
in part (g) are different. Discuss/Comment. Note also that, in the
original energy expression, if you replace all nX by −nX , your energy
does not change, that is to say, the system is invariant under this
transformation. How does <

∑
nX > behave under this symmetry?

What can you say about the symmetry when you add the additional
term? when you calculate <

∑
nX > with the additional term?(10

points)

(0 < α << ε)

You can use the following formulas/definitions without deriving them:

dE = TdS − PdV + μdN

dF = −SdT − PdV + μdN

dW = TdS + V dP + μdN

dΦ = −SdT + V dP + μdN

F = E − ST ; W = E + PV ; Φ = E − ST + PV

S = ln ΔΓ(E) ; ΔΓ(E) = ΔE
∂

∂E
Γ(E)

ln N ! � N ln N − N

β =
1
T

, k = 1

For anything else, you need to derive it.
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nA nB nC nD E
∑

nX E′

Table 1:
E Degeneracy

Table 2:
E’ Degeneracy

Table 3:
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