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Data Acquisition (DAQ) Fundamentals

Data acquisition involves gathering signals from measurement sources 
and digitizing the signal for storage, analysis, and presentation on a PC. 

Data acquisition (DAQ) systems come in many different PC technology forms 
f t fl ibilit h h i tfor great flexibility when choosing your system. 

Scientists and engineers can choose from PCI (Peripheral Component 
Interconnect) PXI PCI Express PXI Express PCMCIA USB Wireless andInterconnect) , PXI, PCI Express, PXI Express, PCMCIA, USB, Wireless and 
Ethernet data acquisition for test, measurement, and automation applications. 

There are five components to be considered when building a basic DAQThere are five components to be considered when building a basic DAQ 
system :
• Transducers and sensors
• Signals Signals
• Signal conditioning
• DAQ hardware
• Driver and application software Driver and application software



http://zone.ni.com/devzone/cda/tut/p/id/4811

PXI is the open, PC-based platform for test, measurement, and control
PXI systems are composed of three basic components — chassis, system 
controller, and peripheral modules

Standard 8-Slot PXI Chassis 
Containing anContaining an
Embedded System Controller and 
Seven Peripheral Modules



A typical DAQ system with National Instruments SCXI signal conditioning yp y g g
accessories



A t d i d i th t t h i l h i t

Transducers and sensors

A transducer is a device that converts a physical phenomenon into a 
measurable electrical signal, such as voltage or current. 

The ability of a DAQ system to measure different phenomena depends onThe ability of a DAQ system to measure different phenomena depends on 
the transducers to convert the physical phenomena into signals measurable 
by the DAQ hardware.

Phenomenon Transducer
Temperature Thermocouple, RTD, Thermistor
Light Photo Sensor
Sound Microphone
Force and Pressure Strain Gage

Piezoelectric Transducer
Position and Displacement Potentiometer, LVDT, Optical Encoder
A l ti A l tAcceleration Accelerometer
pH pH Electrode



Signals

The appropriate transducers convert physical phenomena into measurableThe appropriate transducers convert physical phenomena into measurable
signals.

However, different signals need to be measured in different ways. For this, g y
reason, it is important to understand the different types of signals and their
corresponding attributes.

Signals can be categorized into two groups:

Analog

Digital



Analog Signals

An analog signal can be at any value with respect to time A few examples of analogAn analog signal can be at any value with respect to time. A few examples of analog 
signals include voltage, temperature, pressure, sound, and load. The three primary 
characteristics of an analog signal include level, shape, and frequency 

Because analog signals can take on any value, level gives vital 
information about the measured analog signal. The intensity of a 
light source, the temperature in a room, and the pressure inside 

h b ll l th t d t t th i t fa chamber are all examples that demonstrate the importance of 
the level of a signal. 

Primary Characteristics of an Analog Signal



Digital Signals

A digital signal cannot take on any value with respect to time. 
Instead, a digital signal has two possible levels: high and low. 

Digital signals generally conform to certain specifications that define characteristics 
of the signal. Digital signals are commonly referred to as transistor-to-transistor logic 
(TTL). TTL specifications indicate a digital signal to be low when the level falls within ( ) p g g
0 to 0.8 V, and the signal is high between 2 to 5 V. 

The useful information 
that can be measured 
from a digital signalfrom a digital signal 
includes the state (on or 
off, high or low ) and the 
rate of a digital how the g
digital signal changes 
state with respect to time





Signal Conditioning

Sometimes transducers generate signals too difficult or too dangerous to 
measure directly with a DAQ device. 
For instance, when dealing with high voltages, noisy environments, extreme high g g g y g
and low signals, or simultaneous signal measurement, signal conditioning is 
essential for an effective DAQ system. Signal conditioning maximizes the 
accuracy of a system, allows sensors to operate properly, and guarantees safety.

Signal conditioning accessories can be used in 
a variety of applications including:

AmplificationAmplification
Attenuation
Isolation (The system being monitored may 

contain high-voltage transients that couldcontain high-voltage transients that could 
damage the computer without signal 
conditioning)

Bridge completionBridge completion
Simultaneous sampling
Sensor excitation
Multiplexing (A common technique for u t p e g ( co o tec que o

measuring  several signals with a single 
measuring device is multiplexing.)





Signal 
conditioning



Example for Need of Amplifiers 
Amplification – The most common type of signal conditioning is amplificationAmplification – The most common type of signal conditioning is amplification. 
Low-level thermocouple signals, for example, should be amplified to increase the 
resolution and reduce noise. For the highest possible accuracy, the signal should be 
amplified so that themaximum voltage range of the conditioned signal equals theamplified so that themaximum voltage range of the conditioned signal equals the 
maximum input range of the A/D Converter.



DAQ Hardware
DAQ hardware acts as the interface between the computer and the outside worldDAQ hardware acts as the interface between the computer and the outside world. 
It primarily functions as a device that digitizes incoming analog signals so that the 
computer can interpret them. Other data acquisition functionality includes:

· Analog Input/Output
· Digital Input/Output
· Counter/Timers

M l if i bi i f l di i l d i i l· Multifunction - a combination of analog, digital, and counter operations on a single 
device

NI Wi-Fi Data Acquisition
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Full scale voltage =23 g
range R=8V



A/D converterA/D converter



Dynamic Response of 
Measurement SystemsMeasurement Systems



A static measurement  of a physical quantity is 
performed when the quantity is not changing inperformed when the quantity is not changing in 
time.

The deflection of a beam under a constant load 
would be a static deflection.would be a static deflection.

However, if the beam were set in vibration, theHowever, if the beam were set in vibration, the 
deflection would vary with time (dynamic 
measurement).measurement).



Zeroth- First- and Second-Order Systems:Zeroth , First and Second Order Systems:

A system may be described in terms of a general
i bl (t) itt i diff ti l ti fvariable x(t) written in differential equation form as:

where F(t) is some forcing function imposed on the system.

The order of the system is designed by the order of the differential equationThe order of the system is designed by the order of the differential equation.

A zeroth-order system would be governed by:



A first-order system is governed by:

A second-order system is governed by:



The zeroth order system indicates that the system variable x(t) will 
follow the input forcing function F(t) instantly by some constant 
value:

Th t t 1/ i ll d th t ti iti it f th tThe constant 1/a0 is called the static sensitivity of the system.



The first order system may be expressed as:

The  τ= a1/a0 has the dimension of time 
d i ll ll d th ti t tand is usually called the time constant 

of the system.



For step input :      F(t)=0 at t=0
F(t)=A for t>0

Along with the initial condition x=x0 at t=0g 0

The solution to the first order system is:

where

Steady 
state 

response

Transient 
response of 
the systemresponse

(call x∞) 
the system

The same solution can be written in dimensionless forms as: 



The rise time is the time required to achieve a 
response of 90 percent of the step inputresponse of 90 percent of the step input. 

Thi iThis requires:

or

t 2 303t= 2.303 τ



F(t) x(t)

http://cobweb.ecn.purdue.edu/~aae520/



Dynamic Response of Measurement 
S

Z O d S t

Systems

Zero Order System: 

Input signalOutput signal

)()( tFKtx ⋅=



I t i l lInput signal examples:

F(t) F(t-t )F(t) F(t-t0)

Unit step function 
(Heaviside function)

Shifted unit step function



I t i l l

.

Input signal examples:

Impulse function (Dirac delta function)p ( )



I t i l l

Square Wave: A square wave is a series of rectangular pulses.

Input signal examples:

some examples of square waves:
These two square waves have the same 
amplitude, but the second has a lower 
frequency.



Dynamic Response of Measurement 
S
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Dynamic Response of Measurement 
S

First Order System
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Dynamic Response of Measurement 
S

S S O S

Systems
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Dynamic Response of Measurement 
S

Second Order System - Sinusoidal Response
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Dynamic Response of Measurement 
S

Second Order S stem Imp lse Response

Systems
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Filters
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Example: MUSIC

Basically, the equalizer in your stereo is nothing more than a set of band
pass filters in parallel. Each filter has a different frequency band that it

t l Th li i d t b l th i l diff tcontrols. The equalizer is used to balance the signal over different
frequencies to “shape” the noise (music)

amplitude

© Dr. Peter Avitabile University of Massachusetts Lowell
frequency



The instrument that is used to make measurements will have some very
definite frequency characteristics. This defines the “usable” frequency range
of the instrument. As part of the lab and measurements taken, there was ap ,
different usable frequency range for the oscilloscope and the digital
multimeter

lit d lit damplitude amplitude

frequency frequency

© Dr. Peter Avitabile University of Massachusetts Lowell

frequency frequency



amplitude amplitude

f

© Dr. Peter Avitabile University of Massachusetts Lowell

frequency frequency



In addition to instruments, the actual transducers used to make
measurements also have useful frequency ranges. For instance, a strain
gage accelerometer and a peizoelectric accelerometer have different useful
frequency ranges

lit d lit damplitude amplitude

frequency frequency
© Dr. Peter Avitabile University of Massachusetts Lowell

frequency frequency



Low Pass Filter ExamplesLow Pass Filter Examples
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Example Signal
Fs = 100;
t = 0:1/Fs:1;
x = 5+ sin(2*pi*t*5)+ 25*sin(2*pi*t*40);

Example Signal

x =.5+ sin(2 pi t 5)+.25 sin(2 pi t 40);
%  DC plus 5 Hz signal and 40 Hz signal sampled at 100 Hz for 1 sec
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Measurement Error

The basis for the uncertainty model lies in the nature of measurement error. We 

Measurement Error

view error as the difference between what we see and what is truth.

Measured value True value

(bias error)

Measurement error



Measurement Error

• Accuracy
– Measure of how close the result of the experiment comes toMeasure of how close the result of the experiment comes to 

the “true” value
• Precision

M f h tl th lt i d t i d ith t– Measure of how exactly the result is determined without 
reference to the “true” value



Measurement Error

Bias ErrorBias Error

To determine the magnitude of bias in a given measurement situation, we 
must define the true value of the quantity being measured Sometimes thismust define the true value of  the quantity being measured. Sometimes this 
error is correctable by calibration.

To determine the magnitude of bias in a given measurement situation weTo determine the magnitude of bias in a given measurement situation, we
must define the true value of the quantity being measured. This true value 
is usually unknown.

Random Error

Random error is seen in repeated measurements. The measurements do p
not agree exactly; we do not expect them to. There are always numerous 
small effects which cause disagreements. This random error between
repeated measurements is called precision error. 
We use the standard deviation as a measure of precision error.



Measurement Error

Average of measured values

Measurement Error

Bi E x
True Value

Average of measured values 

x Measured Value

Bias Error
Systematic Error
Remains Constant During Test
Estimated Based On

x

xi Measured Value

Bias Error β

Estimated Based On 
Calibration

or judgement
β

Random ErrorPrecision ( Random Error )
Precision Index - Estimate of 
Standard xxii −=ε

Total Error δi

Standard
Deviation

A statistic, s, is calculated
from data to estimate the precision Total Error δi

δ β  

p
error and is called the precision 
index
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We may categorize bias into five classes :
o large known biases, 
o small known biases, 
o large unknown biases and 
o small unknown biases that may have unknown sign (±) or known sign. 

The large known biases are eliminated by comparing the instrument to a standard 
instrument and obtaining a correction. This process is called calibration. 

Small known biases may or may not be corrected depending on the difficulty of the 
correction and the magnitude of the bias. 

Th k bi t t bl Th t i k th t th i t b t dThe unknown biases, are not correctable. That is, we know that they may exist but we do 
not know the sign or magnitude of the bias.

Five types of bias errors



Every effort must be made to eliminate all large unknown biasesEvery effort must be made to eliminate all large unknown biases. 

The introduction of such errors converts the controlled measurement process 
into an uncontrolled worthless effort. 

Large unknown biases usually come from human errors in data processing, 
incorrect handling and installation of instrumentation, and unexpected g p
environmental disturbances such as shock and bad flow profiles. We 
must assume that in a well controlled measurement process there are no 
large unknown biases. To ensure that a controlled measurement process 
exists, all measurements should he monitored with statistical quality control 
charts.



True Value True Value

Measurement Error
True Value True Value

Precise, Accurate (Unbiased) Precise, Inaccurate (Biased)

Imprecise, Accurate (Unbiased) Imprecise, Inaccurate (Biased)p , ( ) p , ( )



ACCURACY AND PRECISIONACCURACY AND PRECISION
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Normal Distribution  ( Gaussian or Bell Curve )

The normal distributions are a very important class of statistical distributions. All 
normal distributions are symmetric and have bell-shaped density curves with a 
single peak.

To speak specifically of any normal distribution, two quantities have to be 
specified: the mean μ, where the peak of the density occurs, and the standard 
deviation σ which indicates the spread of the bell curve

Normal Distribution

4.5

deviation , σ which indicates the spread of the bell curve.

The normal pdf ( probability density function) is:
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P t E ti tiParameter Estimation

A desirable criterion in a statistical estimator is unbiasedness. A statistic is 
unbiased if the expected value of the statistic is equal to the parameter being 
estimated. 
Unbiased estimators of the parameters, μ, the mean, and σ, the standard 
deviation are:

x
N

i∑
1 Estimation of mean, μ
N

x = 1 , μ
[ mean(data) ]

)(
1

2−
=

∑ xx
s

N

i Estimation of standard deviation, σ
[ std(data) ]1−N

s [ std(data) ]

N: number of data measuredN: number of data measured



Data Sample

Signal from Hot Wire in a Turbulent Boundary Layer

Data Sample

Output from an A/D Converter (in counts) at Equal Time Intervals
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Estimate of the Probability Density Function
[ hist(data,# of bins) ]
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COMMON SENSE ERROR ANALYSIS
Examine the data for consistent.  No matter how hard one tries, there will always be some data 
points that appear to be grossly in error.  The data should follow common sense consistency, and 
points that do not appear "proper" should be eliminated.  If very many data points fall in the 

COMMON SENSE ERROR ANALYSIS

category of "inconsistent" perhaps the entire experimental procedure should be investigated for 
gross mistakes or miscalculations.

Perform a statistical analysis of data where appropriate.  A statistical analysis is only appropriate 
when measurements are repeated several times. If this is the case, make estimates of such 
parameters as standard deviation, etc.

Estimate the uncertainties in the results. These calculations must have been performed in 
advance so that the investigator will already know the influence of different variables by the time 
the final results are obtained.

Anticipate the results from theory.  Before trying to obtain correlations of the experimental data, 
the investigator should carefully review the theory appropriate to the subject and try to think some 
information that will indicate the trends the results may take.  Important dimensionless groups, 
pertinent functional relations, and other information may lead to a fruitful interpretation of the data.

Correlate the data. The experimental investigator should make sense of the data in terms of 
physical theories or on the basis of previous experimental work in the field.  Certainly, the results 
of the experiments should be analyzed to show how they conform to or differ from previous 
investigations or standards that may be employed for such measurements.

(Ref. Holman, J. P., ”Experimental Methods for Engineers")


