Summary and additional notes for Static pressure measurements:
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Determination of static pressure a) Wall tapping b) static tube
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And it is also function of laminar or tubulent condition of the wall-bounded flow.
Here,

ds 15 the tapping (onfice) diameter,
uy = 1y /p is the friction velocity,

D is the flow lengthscale, (8.9 Inapipe flow, D is .'
1 the diameter of pipe) o
M 1s the Mach number Y
L) : s
. . e \ I.| Orifi
I 1s the depth of the onifice, o e
d 15 the diameter of the cavity behind the orifice; k.- F
€ 15 the root-mean-square height ot burrs on the \ |
: . - l.: Cavit
edge of the tapping onhce, d —= o o S

p 1s the fluid density

V' is the kinematic viscosity



Magmhed npages of wall tapping with dy = 2.381 mm.
(a) Rejected due to burring (€ /d, = 0.63 x 10~) and (b) Accepted
{After McKeon and Smits [4.13)])



Total pressure measurement summary:
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Probes for the measurement of total pressure (@) blunt-nosed cylindrical Pitot probe; (b) Alattened Pitot probx
{c) Kiel probe; and from shock relationships: (d) Pitot probe in supersonic flow with known freestream static pressure p.
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Flow Direction Measurements

To describe a flow-field, both the flow
direction and velocity magnitude are
needed. !

The flow direction measurements also allow
a better alignment of the probe to the flow PG FLANE
direction as required for accurate static
%
N

pressure measurements.

Variations of the velocity component in the %
plane perpendicular to the probe stem are , eno
measured by the yaw angle. Variations of ¥
the velocity direction in the plane
perpendicular to it are measured by the
pitch angle.
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Fig. 3.1 - Definition of pitch and yaw angle



Yaw Angle Measurements

The simplest geometry of a directional probe is a slanted tube.
It consists of a total head probe with its nose cut at an angle A.
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Fig. 3.2 - Slanted tube geometry for yaw angle measurements
(J.R. Erwin, 1964)



Yaw Angle Measurements

Rotating the probe around the stem axis
allows the flow angle to be defined by

The response of the slanted tube to inlet
flow angle allows the determination of the
yaw angle within £5° only.

One pressure measurement is therefore
not sufficient to provide accurate
directional information.
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Yaw Angle Measurements
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The large pressure gradients

observed at negative yaw (o) angles. P o
can be used for an accurate .. |
definition of the flow direction by
measuring the pressure difference

between two symmetric slanted
tubes (ex: A=30° and A=-30°)

Different probe geometries based on
this principle:

Conrad’s “Cobra” probe is
the most widely used. sz«
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Fig. 3.4 - Twa dimensional fiow directional probes
(W, Wuest, 1967)



Yaw Angle Measurements

Typical examples of probes which combine total, static-pressure and
direction measurements are shown on Fig. 3.5
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Yaw Angle Measurements

Typical examples of probes which combine total, static-pressure and
direction measurements are shown on Fig. 3.5
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Yaw Angle Measurements

There are two ways in which a pressure

sensitive direction probe can be used.

The simpler and more direct one is the
method in which the probe is rotated to
balance the pressure difference between
the two orifices. The flow angle is then
just the rotation angle of the probe.
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Yaw Angle Measurements

In the alternative approach, the Mol /f“ o
probe is in a fixed position | # C _/‘2,/‘
facing the flow and the flow F/ | Iy
direction is defined from the o

measured pressure difference ‘\
by means of a calibration 5>
curve.
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Yaw Angle Measurements

A typical calibration curve of a NACA short
prism probe is shown on Fig. 3.6

The pressure difference P -Pg, varies linearly
with the yaw angle.
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Yaw Angle Measurements
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Yaw Angle Measurements

A typical dependence on o~
pitch angle of zero yaw ulpl.pﬁ 1'— |
angle, static and total _ 2.1 —d 44 e
pressure: el | |
[ i M- — < ! |
] ke °  BiP =Ry
; Pon= Py
| 8 "E[:f““
VIEW B-B PR : Psp-Fs
/_ PD: q 1
P [ o /r \_,./'/_ e ki e F——
N |
£/ 7 el L |
450 :'-_-_4_'-—| i
o k = S — . ]

Pitch angle



Yaw Angle Measurements

Other directional probes are: cylinder probes, aerofoils and bent tube
(finger probes)
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Fig. 3.7 - Cross section of various directional probes

(0. De Vries, 1058)



Yaw Angle Measurements

A typical calibration curve of a cylindrical probe:
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Fig. 1.8 - Varintion of eylindrical probe pressure difference with ynw nngle
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Three dimensional flow direction probes

Adding a pair of symmetrically slanted tubes in the plane perpendicular
to the yaw plane, allows the simultaneous definition of pitch and yaw
angle.
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Fig, 3.9 - Three dimensional Sow direction probe



Three dimensional flow direction probes

I Pitch-2

Pitch-1 :




Three dimensional flow direction probes
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Three dimensional flow direction probes

Other probe geometries:
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Fig. 3.11 - Three dimensional How direction probes

(W. Wuest, 1987)

*Conrad'’s four holes probe has four holes for directional measurements and total

and static pressure holes for velocity measurements.
*The collar downstream of the static pressure holes is adjusted in such away to
maintain the measured static pressure close to the true value over a wide range

of Mach numbers.



Three dimensional flow direction probes

Adjusting the probe during the
measurements to zero yaw angle
allows a simpler calibration in function
of the pitch only.
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Fig. 3.12 - Calibeation curves of Conrad's [uw Lole probe
(K. Bammert et al., 1973)
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7 hole Probe

0.028"

Measures
total pressure
static pressure
3 velocity components

0.109"




Seven-Hole Pressure Probe Coordinate System is
Defined By Pitch and Yaw Angles

V|-cos0-cos v
V

.SIN0O

V|-cos0-siny

Computer Controlled
Rotary Table
Stepper Motor

All dimensions




Velocity Invariant, Non-Dimensional Seven-Hole Probe
Pressure Coefficients

0.035" @@ Flow Angle Coefficients:
—-C
@@ 0109" Cpa — CPA _|_ PB 2 PC Pitch
() ]
A Cpﬁ :E(CPB +CPC) Yaw

C PR
A I:’7 -P Total and Static Pressure Coefficients:

Cpy =2k P, —P P-P
v P7 _E CI:)Total = I T_Otal CI:’Static - - St_atic
PC B P7 _E

- 2 —
Pi ‘V‘ = \/(g) (P7 N P)(1+ CI:)Static B CI:)Total)



Seven-Hole Probe Angular Sensitivity Must be
Calibrated in a Uniform Flow Field
Probe 5 —
4 &\\
3_6:_28"/ \\\\\\ -
> e \¥\\¥IIT* )

r

7
T
]
17
2

——v
r

o4

Yaw Pressure Coefficient (Cpg)

-2 -
AT ALY

3 / fﬁ?/ ~ A!(‘;!— 40 d
~ =

4 ////// ~

5 / S 0=-28°_ |

“ = .30
-6 i g =2g8° | — Constant Pitch (6) v
Computer Controlled ‘Z///\V: -30‘° --— Constant Yaw ()
-7 T T ! l l l l

Rotary Table 8 -7 6 5 -4 -3 2 -1 0 1 2 3 4

Stepper Motor Pitch Pressure Coefficient (Cp,)



Pitch Angle (8)

Seven-Hole Pressure Probe Calibration Data
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Computation of Flow Direction, Flow Velocity, total pressure, static
pressure from Seven-Hole Pressure Probe

Measure Probe Interpolate on probe calibration
Pressures data to find total and static
(P1. P2, P3, Py, pressure coefficients:
Ps, Ps, P7) Coora = f(0, W)

CPstatic =10, v)

Compute: Compute total and static pressure:
Cpo = f(P)iz17 Protal = P7 = (P7 N P)Cptotal
Cpp = f(Pdiz17 Psatic = P — (P7 - E)CpStatic
P = mean(Pi)iﬂ‘7

Compute magnitude of flow velocity:

- 2 _
‘V‘ = \/(Ej (P7 B P)(1+ CPStatic B CPTotal)

\

Interpolate on probe
calibration data to Compute velocity components:
find flow angles:

u= ‘\7‘ cos(®) cos(¥)
0= f(Cp, , Cpp) V= ‘\7‘ sin(®)

v = f(Cpy » Cpp) W = ‘\7‘ cos(®) sin(\¥)




Example Experiment
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Mach Number Influence

A properly designed and constructed directional probe should not be
affected by changes in Reynolds or Mach number, as long as the flow is
symmetrical about the probe axis.

The accuracy of a directional probe will not be impaired, even not in
supersonic flows, if the probe is parallel with the flow, because this will
give a symmetric shock pattern.

However, a fixed probe at non-zero incidence may be seriously in error,
because the shock on one side may be very different from its counterpart,
which will affect the measurement.

The static pressure measurement however is very sensitive to Mach
number and yaw angle.



Mach Number Influence

Mach number and geometry of the probe head have an influence on
angular sensitivity: S=P -Pr/(P,-P.)
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The finite distance between the slanted tube orifices prevents an accurate

Velocity and pressure gradients

measurement of the flow direction in flows with a velocity gradient.

The flow angle distribution shown on Fig. 3.14 is measured in the wake behind a
compressor blade, by means of a NACA short prism directional probe.

The measured sinusoidal variation of the flow angle in the wake is uniquely due to
the probe size.

Blade-to-Blade pitch angle
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Velocity and pressure gradients

Large velocity gradients occurring in transonic flows where expansion
waves, shocks and wakes are interfering require special probes to assure
accurate measurements.

Fig. 3.15 - Shock and expansion wave interference with probes
(C.H. Sieverding, 1975)



Velocity and pressure gradients

The requirement of measuring total pressure, static pressure and the differential pressure for
flow angle, simultaneously in one point, is not feasible and has to be replaced by:

Measurement of all values along a line perpendicular to a two dimensional flow-field by

means of separate sensing elements (neptune and needle probe)

B. Use of very compact probes, having all sensing elements, or at least the total and static
pressure holes, close together (wedge and truncated cone probe)
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Velocity and pressure gradients

wedge and truncated cone probe
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Velocity and pressure gradients

*NACA short prism probes have to be excluded for
transonic flow measurements because of the long
distance between the total and static pressure orifices.

*AVA wedge probe and VKI needle probe is
used to measure the transonic flow
downstream of turbine cascades.
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A paper on calibration of 5 hole probes:
Reichert BA and Wendt BJ (1994) A New Algorithm for Five-Hole Probe Calibration,
Data Reduction, and Uncertainty Analysis. NASA Technical Memorandum 106458

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.qov/19950005965 1995105965.pdf

*You can find an example code in the following website for the calibration of 5 hole
Probe:

http://www.nongnu.org/fivehole/download.html




Diagram showing local pressures and velocities in vicinity of fuselage like body
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