10^{th} Homework Due: January 2^{nd} , 2009

- 1. Consider a rigid body. Show that the angular momentum of the rigid body relative to any reference point O is equal to the vectorial sum of the angular momentum of the center of mass of the body relative to the reference point O and the angular momentum of the body relative to its center of mass.
- 2. Solve the following differential equations, given the initial conditions.

(a)
$$y''(x) - 2y'(x) + y(x) = 0$$
 with $y(0) = 0$, $y'(0) = 1$.

(b)
$$y''(x) + 2y'(x) + y(x) = 0$$
 with $y(0) = 0$, $y'(0) = 1$

(c)
$$y''(x) + y(x) = 0$$
 with $y(0) = 0$, $y'(0) = 1$.

(d)
$$y''(x) - y(x) = 0$$
 with $y(0) = 0$, $y'(0) = 1$

where $y'(x) = \frac{dy}{dx}$ and $y''(x) = \frac{d^2y}{dx^2}$ (*Hint:* Assume a solution of the form $y = e^{\alpha x}$ and solve for alpha)

3. The damped harmonic oscillator satisfies the differential equation

$$y''(t) + \gamma y'(t) + ky(t) = 0$$

where the 'denotes differentiation with respect to t. Without explicitly solving the differential equation, show that

$$\frac{d}{dt}\tilde{E} = 0$$

where

$$\tilde{E} = e^{\frac{\gamma}{m}t} \left[\frac{1}{2} my'(t)^2 + \frac{1}{2} ky(t)^2 + \frac{\gamma}{2} y(t)y'(t) \right]$$

4. A complex number is a number that can be written in the form z = a + ib where a and b are some real numbers and $i^2 = -1$. a is called the real part of z, i.e. a = Re(z), and b is called the imaginary part of z, i.e. b = Im(z). If a complex number is given by z = a + ib for some real numbers a and b, then the complex conjugate of z is defined as $z^* = a - ib$. The absolute value of z is defined as $|z| = \sqrt{z^*z}$. The exponent of z is given by

$$e^z = e^{a+ib} = e^a \left(\cos(b) + i\sin(b)\right) \tag{1}$$

- (a) Calculate the absolute values of $z=e^{ib},\,z=4+i3$
- (b) Show that if z=1/(a+ib), then $|z|=\sqrt{a^2+b^2}$, $Re(z)=\frac{a}{a^2+b^2}$, $Im(z)=-\frac{b}{a^2+b^2}$ (Hint: Multiply and divide z by z^*)
- (c) For the given complex numbers z, find r and θ such that $z=re^{i\theta}$ z=3+i4 $z=3e^{i2}+e^{i\pi}$ $z=e^{2+i}+2e^{1-i}$