- So far we learned PW and FW as comparison tools
- AW analysis is said to be the best comparison tool.
- AW value is the equivalent uniform annual worth of all estimated receipts and disbursements during the life cycle of the project or alternative
- AW value is equivalent to the PW and FW values at the MARR for *n* years

• AW = PW(A/P, i, n) = FW(A/F, i, n)

where *n* is the number of years for equal-service comparison.

- When all cash flow estimates are converted to an AW value, this value applies for:
 - every year of the life cycle
 - for each additional life cycle
- The prime advantage of AW analysis is:
 - AW value has to be calculated for only one life cycle
 - not necessary to use the LCM of lives as it is for PW and FW.

- When alternatives being compared have different lives, the AW method makes the assumption that:
 - The service provided by alternatives will be needed for at least the LCM of years or more
 - The selected alternative will be repeated over each life cycle of the LCM in exactly the same manner
 - The cash flow estimates will be the same in every life cycle

Example

Eric Forman, a project engineer is assigned to start up a new office in Wisconsin. Two lease options are available:

	Location A	Location B		
First cost, \$	\$-15,000	\$-18,000		
Annual lease cost, \$ per year	-3,500	-3,100		
Deposit return, \$	1,000	2,000		
Lease term, years	6	9		
For Location A, demonstrate the the equivalence at $i = 10\%$ of PW				
(\$-55,888.4) over three life cycles and AW over one cycle.				

From PW = \$ - 55,888.4 over 18 years

AW = PW(A/P, 10%, 18) = -55, 888.4(0.12193) = -6, 814.47

Directly from AW over 6 years

AW = -15,000(A/P,10%,6) - 3500 + 1,000(A/F,10%,6)

- = -15,000(0.22961) 3500 + 1,000(0.12961)
- = \$-6,814.54

- Selection guidelines are the same as for the PW method
- For Mutually Exclusive Alternatives:
 - One Alternative: Calculate AW at MARR. If $AW \ge 0$, the requested MARR is met or exceeded and the alternative is financially viable.
 - Two or more Alternatives: Calculate AW of each alternative at MARR. Select the alternative with the AW value that is numerically largest.
- For independent projects:
 - All projects with $AW \ge 0$ calculated at MARR are acceptable.
- If a study period is specified, the cash flows over the study period are converted to AW.

In Class Work 8

Southern Cement plans to open a new rock mining site. Two plans are suggested. Plan A requires the purchase of two earth movers and an unloading pad at the plant. Plan B calls for the construction of a conveyor from mining site to the plant. MARR is effective 15% per year compounded monthly, and costs are given:

	<u>Plan A</u>		<u>Plan B</u>	
	Mover	Pad	Conveyor	
First cost,\$	\$-45,000	\$-28,000	-175,000	
Annual Operating cost, \$	-6,000	-300	-2,500	
Salvage value, \$	5,000	2000	10,000	
Life, years	8	12	24	

- Compare the two plans using AW method
- Compare the two plans using AW method over a study period of 6 years. The market value of each mover after 6 years is \$20,000 and trade-in value of the conveyor after 6 years is \$25,000. The pad can be salvaged for \$2,000.

Dr.Serhan Duran (METU)

IE 347 Week 5

- The LCM of lives is 24 years.
 - $AW_A = -12,000 90,000(A/P, 15\%, 8) + 10,000(A/F, 15\%, 8)$
 - 300 28,000(A/P, 15%, 12) + 2,000(A/F, 15%, 12)
 - = -12,000 90,000(0.22285) + 10,000(0.07285)
 - 300 28,000(0.18448) + 2,000(0.03448)
 - = \$-36,724
 - $AW_B = -175,000(A/P,15\%,24) + 10,000(A/F,15\%,24)$
 - 2,500
 - = -175,000(0.15543) 2,500 + 10,000(0.00543)
 - = \$-29,646

Plan B is selected

Plan B is selected

Over a study period of 6 years

 $AW_A = -12,000 - 90,000(A/P, 15\%, 6) + 40,000(A/F, 15\%, 6)$

- 300 28,000(A/P, 15%, 6) + 2,000(A/F, 15%, 6)
- = -12,000 90,000(0.26424) + 40,000(0.11424)
- 300 28,000(0.26424) + 2,000(0.11424)
- = \$-38,682
- $AW_B = -175,000(A/P,15\%,6) + 25,000(A/F,15\%,6)$
 - 2,500
 - = -175,000(0.26424) 2,500 + 25,000(0.11424)
 - = \$-45,886

Plan A is selected

- Same concept in Capitalized Cost, projects that have long lives that can be considered infinite in economic analysis
- Annual worth of an initial investment is A = Pi
- Cash flows recurring regular or irregular intervals handled by:
 - converting them to equivalent uniform annual amounts A for one cycle

Example

An engineer received a bonus of \$10,000. If he deposits it now at an interest rate of 8% per year, how many years must the money accumulate before she can withdraw \$2,000 per year forever?

$$P_n = \frac{A}{i} = \frac{2,000}{0.08} = \$25,000$$
$$10,000(1+0.08)^n = 25,000 \rightarrow n = 12$$