- In previous weeks, the alternatives have been mutually exclusive; only one could be selected.
- If the projects are not mutually exclusive; they are called independent projects.
- We learned the criteria to select from several independent projects; it is possible to select any number of them.
- But in real life, there is always some upper limit on the amount of capital available for investment.
- Therefore, the Investment Capital must be distributed among the viable independent investment opportunities.
- The technique applied is called the Capital Budgeting Method; determines the economically best rationing of initial investment capital among independent projects.
- Capital Budgeting Method is an application of the PW method.

- The term project is used to identify each independent option.
- The term bundle is used to identify a collection of independent projects.
- A contingent project is one that has a condition placed upon its acceptance or rejection.
 - A cannot be accepted unless B is accepted.
 - A can be accepted instead of B, but not both.
- A dependent project is one that must be accepted or rejected based on the decisions of other projects.

- B must be accepted if both A and C are accepted.
 - These complicating conditions are handled by creating packages of related projects in such a way to ensure the independency with the remaining projects.

Characteristics of Capital Budgeting Problem

- Several independent projects are identified, and net cash flow estimates are available
- Each project is either selected entirely or not; partial investment into a project is not available.
- A stated budgetary constraint restricts the total amount available for investment. Budget constraint may also be present for other years. The investment limit is denoted by *b*.
- The objective is to maximize the return on investments using a measure of worth, usually the PW value.

Terminology

Selection Guide for Capital Budgeting

Accept projects with the best *PW* values determined at MARR over the projected life, provided the investment capital limit is not exceeded.

- Equal service assumption is not valid in capital rationing
- There is no life cycle of a project beyond its estimated life
- But there is an implied reinvestment assumption:
 - All positive net cash flow of a project are reinvested at the MARR from the time they are realized until the end of the longest-lived project.

- n projects with same expected life, don't exceed the budget limit b
- First, we need to formulate all possible mutually exclusive BUNDLES
 - Do-nothing project
 - one project at a time
 - two project at a time
 - all *n* projects together
- Total number of mutually exclusive alternatives =2ⁿ
- Then the *PW* for each bundle is determined at MARR.
- The bundle with the largest PW value is selected.

٢

Now let's develop all possible mutually exclusive alternatives for four projects given below; when the budget limit b = 15,000.

Project	Initial Investment
А	\$-10,000
В	-5,000
С	-8,000
D	-15,000

Bundle	Bundle Projects involved Total Investm	
1	Do nothing	0
2	А	-10,000
3	В	-5,000
4	С	-8,000
5	D	-15,000
6	AB	-15,000
7	BC	-13,000

The formal procedure to solve a capital budgeting problem using *PW* analysis:

- Develop all mutually exclusive bundles with a total initial investment that does not exceed the capital limit b.
- Sum the net cash flows for all projects in each bundle *j* for each year *t* from 1 to the expected project life n_j ; to find NCF_{jt} . Refer to the initial investment of bundle *j* at time t = 0 as NCF_{j0} .

Compute the present worth value PW_j for each bundle at the MARR.

$$PW_j = \sum_{t=1}^{t=n_j} NCF_{jt}(P/F, i = MARR, t) - NCF_{j0}$$

Select the bundle with the numerically largest PW_j value.

In Class Work 14

Our company has \$20,000 to allocate next year to new projects. Any or all of the five projects in the table below may be accepted. Each project has an expected life of 9 years. Select the projects to invest if a minimum of 15% return is desired.

Project	Initial Investment	Annual Net CF	Project Life
А	\$-10,000	\$2,870	9
В	-15,000	2,930	9
С	-8,000	2,680	9
D	-6,000	2,540	9
Е	-21,000	9,500	9

We have b = 20,000 to select one bundle that will maximize the *PW*.

Bundle	Projects	Initial	Annual Net	PWi
j	Involved	Investment NCF _{j0}	CF NCF _j	
1	А	\$-10,000	\$2,870	\$3,694
2	В	-15,000	2,930	-1,019
3	С	-8,000	2,680	4,788
4	D	-6,000	2,540	6,120
5	AC	-18,000	5,550	8,482
6	AD	-16,000	5,410	9,814
7	CD	-14,000	5,220	10,908
8	DN	0	0	0

$$PW_{j} = \sum_{t=1}^{t=9} NCF_{jt}(P/F, i, t) - NCF_{j0}$$

= NCF_{j}(P/A, 15%, 9) - NCF_{j0}

Invest \$14,000 into projects C and D.

Dr.Serhan Duran (METU)

IE 347 Week 10

- Usually the projects do not have the same expected life
- *PW* method for capital budgeting problem evaluates each project over the period of the longest-lived project, n_L.
- All positive net cash flow of a project are assumed to be reinvested at the MARR from the time they are realized until the end of the longest-lived project (from year n_j through year n_L)
- Therefore, the use of LCM of lives or longest-lived life, n_L is not necessary, each project's PW is calculated over its own life n_j

In Class Work 15

For MARR = 15% per year and b = \$20,000, select from the following independent projects.

Project	Initial Investment	Annual Net CF	Project Life
А	\$-8,000	\$3,870	6
В	-15,000	2,930	9
С	-8,000	2,680	5
D	-8,000	2,540	4

Dr.Serhan Duran (METU)

IE 347 Week 10

We have b = 20,000 to select one bundle that will maximize the *PW*.

Bundle	Projects	Initial	Net Cash Flows		PW_j
j	Involved	Investment NCF _{j0}	Year t	NCF _{jt}	-
1	А	\$-8,000	1-6	\$3,870	\$6,646
2	В	-15,000	1-9	2,930	-1,019
3	С	-8,000	1-5	2,680	984
4	D	-8,000	1-4	2,540	-748
5	AC	-16,000	1-5	6,550	7,630
			6	3,870	
6	AD	-16,000	1-4	6,410	5,898
			5-6	3,870	
7	CD	-16,000	1-4	5,220	235
			5	2,680	
8	DN	0		0	0

Invest \$16,000 into projects A and C.

Now, we can verify that all positive net cash flow of a project are reinvested at the MARR from the time they are realized until the end of the longest-lived project (from year n_i through year n_L).

Now, we can verify that all positive net cash flow of a project are reinvested at the MARR from the time they are realized until the end of the longest-lived project (from year n_i through year n_L).

$$PW_{Bundle} = PW_A + PW_B$$

Dr.Serhan Duran (METU)

Now, we can verify that all positive net cash flow of a project are reinvested at the MARR from the time they are realized until the end of the longest-lived project (from year n_i through year n_L).

$$PW_{j} = NCF_{j}(F/A, MARR, n_{j})(F/P, MARR, n_{L} - n_{j})(P/F, MARR, n_{L})$$

$$= NCF_{j}\frac{(1+i)^{n_{j}} - 1}{i}(1+i)^{n_{L} - n_{j}}\frac{1}{(1+i)^{n_{L}}}$$

$$= NCF_{j}\frac{(1+i)^{n_{j}} - 1}{i(1+i)^{n_{j}}}$$

$$= NCF_{j}(P/A, MARR, n_{j})$$

- Can be formulated using integer programming
- **Maximize:** Sum of *PW* of net cash flows of independent projects
- Constraints:

٨

- Sum of initial investments can not exceed budget limit b
- Each project is completely selected or not
- Decision Variable: x_k: project k is selected or not
- k represent each independent project not bundle.

$$\begin{array}{ll} \textit{Maximize} & \sum_{k=1}^{n} PW_k x_k \\ \textit{Subject to} & & \\ & \sum_{k=1}^{n} \textit{NCF}_{k0} x_k \leq b \\ & x_k = 0 \text{ or } 1 \text{ for } k = 1, 2, \dots, n \end{array}$$

Now, the IP formulation for the In Class Work 15; k = 4, and b = 20,000.

Maximize $6,646x_1 - 1,019x_2 + 984x_3 - 748x_4$ Subject to

> 8,000 x_1 + 15,000 x_2 + 8,000 x_3 + 8,000 $x_4 \le 20,000$ x_1, x_2, x_3 and $x_4 = 0$ or 1

Solution: $x_1 = x_3 = 1$ and $x_2 = x_4 = 0$ with objective value of 7,630.

Additional Constraints

• $x_c - x_d \leq 0$

If projects e and f are strict compliments

• $x_e - x_f = 0$