
CENG 242 

Hw #4 
Spring 2006/2007 

(Due: April 29th, 2007 Sunday 23:59) 
 

In this homework, you will write a C++ code simulating a very simple Database 
Management System (DBMS). 
  
You will have a class called Table. A table consists of attributes (columns) and some 
values for these attributes (rows). An example table can be: 
 
Name ID Grade 
Ali 114 90 
Veli 234 80 
Ali 285 77 
Mehmet 333 93 
 
In this example, Name, ID and Grade are attributes and (Ali,114,90), (Veli,234,80), 
(Ali,285,77) and (Mehmet,333,93) are values. 
 
In the homework, you will implement some methods of relational algebra. Names of the 
attributes and types of all fields of values are assumed be strings in this simple model. 
The methods you will implement are: 
 
• Table(vector<string> attributes) 
 

This method will create an empty table. The names of attributes are given as a vector 
of string. 
 

 
Name ID Grade 

 
 

 
 

• void insertRow(vector<string> value) 
 

This method will insert the given row to the table. If same value exists in the table 
throw an Error typed value REPEATEDVALUE. If size of the given vector is not 
same as number of attributes of the table, then throw an Error typed value 
INVALIDSIZE. Error is an enumerated type: 
 



enum Error {INVALIDSIZE, REPEATEDVALUE, NONEXISTENTVALUE, 
INCOMPARABLE}; 
 

 
Before Insertion 

 
Name ID Grade 
Ali 114 90 
Veli 234 80 

 
 

 
After Insertion of (Ali,285,77) 

 
Name ID Grade 
Ali 114 90 
Veli 234 80 
Ali 285 77  

 
 

• void deleteRow(vector<string> value) 
 

This method will delete the given row from the table. If the value does not exist in the 
table throw NONEXISTENTVALUE. If size of the given vector is not same as 
number of attributes of the table, then throw INVALIDSIZE. 
 

 
Before Deletion 

 
Name ID Grade 
Ali 114 90 
Veli 234 80 
Ali 285 77 

 
 

 
After Deletion of (Veli,234,80) 

 
Name ID Grade 
Ali 114 90 
Ali 285 77  

 
 

• Table select(vector<string> attributes, vector<Condition> conditions) 
 

This method returns a table having the attributes given as first argument and values 
satisfying all the conditions given as second argument. A Condition is a structure: 
 
struct Condition { 
 string attributeName; 
 Oprtr op; 
 string someValue; 
}; 
 
enum Oprtr {EQ,NE,GT,GE,LT,LE}; // ==, !=, >, >=, <, <= 
 
All these operators should work as string comparison operators. 
 
 



The Table 
 
 
 
Name ID Grade 
Ali 114 90 
Veli 234 80 
Ali 285 77 

 
 

Resulting Table after  
Select (Name,ID) where (Grade != “77”, 

ID > “100”)  
 

Name ID 
Ali 114 
Veli 234  

 
You should eliminate the duplicate values in the resulting table. 
 

• Table join(const Table & otherTable) 
 

Joins the table with the given table and returns the resulting table. The result of the 
join operation is the set of all combinations of tuples in both tables that are equal on 
their common attribute names. e.g. 
 

Table1 
 
Name ID Dept 
Ali 114 CENG 
Veli 234 CENG 
Ali 285 EEE 
Mehmet 333 IE 

 
 

Table2 
 
Dept Chair 
CENG Atalay 
EEE Erkmen 
MATH Alpay  

Table1 join Table2 
 
Name ID Dept Chair 
Ali 114 CENG Atalay 
Veli 234 CENG Atalay 
Ali 285 EEE Erkmen 

 
In the resulting table, the order of attributes should satisfy this: 
 

o The first table’s attributes should come first, in the same order. 
o The second table’s remaining attributes will come after, in the same order. 

 
• Table project(vector<string> attributes) 

 
Projects the table with the given attributes and return the resulting table. You should 
eliminate the duplicate values in the resulting table. 

 
The Table 

 
 
Name ID Grade 
Ali 114 90 
Veli 234 80 
Ali 285 77  

Resulting Table after  
Project (ID,Grade) 

 
ID Grade 
114 90 
234 80 
285 77  



• Table division(const Table & otherTable)  
 
This method returns the division of first table with second table. You should eliminate 
the duplicate values in the resulting table. 
 

Table1 
 

Name Dept 
Ali CENG 
Veli CENG 
Ali EEE 

Mehmet EEE 
Veli EEE 

Mehmet IE 
 
 

Table2 
 

Dept 
CENG 
EEE  

Table1 division Table2 
 

Name 
Ali 
Veli  

 
 
• Table unionT(const Table & otherTable) 
 

This method takes the union of two tables having the same attributes. The order of the 
attributes in the resulting table should be the same as the first table’s. You should 
remove the duplicates in the resulting table. If the tables have different attributes 
throw “INCOMPARABLE”.   
 
  

Table1 
 
Name ID Dept 
Ali 114 CENG 
Veli 234 CENG 
Ali 285 EEE 
Mehmet 333 IE 

 
 

Table2 
 
Name Dept ID 
Hasan CENG 242 
Masan CENG 777 
Ali CENG 114  

Table1 union Table2 
 
Name ID Dept 
Ali 114 CENG
Veli 234 CENG
Ali 285 EEE 
Mehmet 333 IE 
Hasan 242 CENG
Masan 777 CENG

 
 

 
 

• Table intersection(const Table & otherTable) 
 

This method takes the intersection of two tables having the same attributes. The order 
of the attributes in the resulting table should be the same as the first table’s. You 
should remove the duplicates in the resulting table. If the tables have different 
attributes throw “INCOMPARABLE”.   

 



 
 
• Table difference(const Table & otherTable) 
 

This method takes the difference of two tables having the same attributes. The order 
of the attributes in the resulting table should be the same as the first table’s. You 
should remove the duplicates in the resulting table. If the tables have different 
attributes throw “INCOMPARABLE”.   

 
• bool operator==(const Table & otherTable) 
 

This method determines whether two tables having the same attributes have same 
values (all the rows). If the tables have different attributes throw 
“INCOMPARABLE”.   

 
• bool operator!=(const Table & otherTable) 
 

This method determines whether two tables having the same attributes do not have 
same values (all the rows). If the tables have different attributes throw 
“INCOMPARABLE”.   

 
• bool operator<=(const Table & otherTable) 

 
This method determines whether the first table is a subset of second table having the 
same attributes (all the rows of first table is also a row of second table). If the tables 
have different attributes throw “INCOMPARABLE”.   

 
• bool operator<(const Table & otherTable) 
 

This method determines whether the first table is a proper subset of second table 
having the same attributes (all the rows of first table is also a row of second table, 
second table has extra rows). If the tables have different attributes throw 
“INCOMPARABLE”.   

 
• bool operator>=(const Table & otherTable) 
 

This method determines whether the first table is a superset of second table having 
the same attributes (all the rows of second table is also a row of first table). If the 
tables have different attributes throw “INCOMPARABLE”.   

 
• bool operator>(const Table & otherTable) 
 

This method determines whether the first table is a proper superset of second table 
having the same attributes (all the rows of second table is also a row of first table, 
first table has extra rows). If the tables have different attributes throw 
“INCOMPARABLE”.   



 
 
• friend ostream & operator<<(ostream & ost, const Table & theTable) 
 

This method prints the Table to output stream. The table should be printed in the 
form: 
 
Attr1|Attr2|…|Attrn| 
Value11|Value12|….|Value1n| 
Value21|Value22|….|Value2n| 
… 
Valuem1|Valuem2|….|Valuemn| 
 
e.g. 
 
Name|ID|Grade| 
Ali|114|90| 
Veli|234|80| 
Ali|285|77| 
Mehmet|333|93| 
 
As you can see, there should not be any white spaces between strings (except 
newlines at the end of each line).  

 
Specifications: 
 
• For detailed information, you can take a look at relational algebra. 
• You can define more private methods for Table class, but you should define the 

above methods as public. The names and types are strict for these methods. 
• In error conditions mentioned above, only throw the exception. Do not write any code 

to catch it in your submission. 
• You will have two files. One is hw4.h for your class declarations, structures, 

enumerated types (Error, Condition, Oprtr, Table etc.); the other is hw4.cpp for your 
definitions. You should not write main function in these files. I will write a main 
function in hw4main.cpp to test your codes. If you want to test your codes before 
submitting, write a main function in hw4main.cpp, include hw4.h from this file, 
download the Makefile from website, put them in the same folder and compile your 
codes with the command make in that folder in inek machines. You will submit a 
single tar file hw4.tar including hw4.h and hw4.cpp. You can tar your files with the 
command “tar cvf hw4.tar hw4.cpp hw4.h”. Do not send me in other formats like 
“.tar.gz”, “.rar”, “.zip” etc. 

• You will submit your codes through cow system. Specifications (file name, method 
names, class name, types etc.) are strict. Breaking any of them will cost you getting a 
0 since black box method is used. 

 


