SAMPLING DISTRIBUTION

SAMPLING DISTRIBUTION

• Let $X_1, X_2, ..., X_n$ be a r.s. of size n from a population and let $T(x_1, x_2, ..., x_n)$ be a real (or vector)-valued whose domain includes the sample space of $(X_1, X_2, ..., X_n)$. Then, the r.v. or a random vector $Y=T(X_1, X_2,...,X_n)$ is called a **statistic.** The probability distribution of a statistic Y is called the *sampling distribution* of *Y*.

SAMPLING DISTRIBUTION

• The *sample mean* is the arithmetic average of the values in a r.s.

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i$$

The sample variance is the statistic defined by

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

• The *sample standard deviation* is the statistic defined by *S*.

Properties of the Sample Mean and Sample Variance

- Let $X_1, X_2,...,X_n$ be a r.s. of size n from a $N(\mu,\sigma^2)$ distribution. Then,
 - a) \overline{X} and S^2 are independent rvs.

b)
$$\overline{X} \sim N(\mu, \sigma^2 / n)$$

$$c) \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

• Let $X_1, X_2,...,X_n$ be a r.s. of size n from a $N(\mu,\sigma^2)$ distribution. Then,

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$

• Most of the time σ is unknown.

$$\frac{\bar{X}-\mu}{S/\sqrt{n}}$$
.

$$\frac{\bar{X} - \mu}{S / \sqrt{n}} = \frac{(\bar{X} - \mu) / (\sigma / \sqrt{n})}{\sqrt{S^2 / \sigma^2}} = \frac{N(0,1)}{\sqrt{(n-1)\chi_{n-1}^2 / (n-1)}} = t_{n-1}$$

In statistical inference, Student's t distribution is very important.

- Let $X_1, X_2, ..., X_n$ be a r.s. of size n from a $N(\mu_X, \sigma_X^2)$ distribution and let $Y_1, Y_2, ..., Y_m$ be a r.s. of size m from an independent $N(\mu_Y, \sigma_Y^2)$.
- If we are interested in comparing the variability of the populations, one quantity of interest would be the ratio

$$\sigma_X^2 / \sigma_Y^2 \rightarrow S_X^2 / S_Y^2$$

 The F distribution allows us to compare these quantities by giving the distribution of

$$\frac{S_X^2 / S_Y^2}{\sigma_X^2 / \sigma_Y^2} = \frac{S_X^2 / \sigma_X^2}{S_Y^2 / \sigma_Y^2} \sim F_{n-1,m-1}$$

- If $X \sim F_{p,q}$, then $1/X \sim F_{q,p}$.
- If $X \sim t_q$, then $X^2 \sim F_{1,q}$.