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LIMITING DISTRIBUTIONS
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CONVERGENCE IN DISTRIBUTION
• Consider that X1, X2,…, Xn is a sequence of 

rvs and Yn=u(X1, X2,…, Xn) be a function of 
rvs with cdfs Fn(y) so that for each n=1, 2,…

( ) ( ),n nF y P Y y= ≤

( ) ( )lim  for all nn
F y F y y

→∞
=

where F(y) is continuous. Then, the sequence 
X1, X2,…, Xn is said to converge in distribution.

d

nY Y→
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CONVERGENCE IN DISTRIBUTION

• Theorem: If                            for every 
point y at which F(y) is continuous, then Yn
is said to have a limiting distribution with
cdf F(y).

• Definition of convergence in distribution 
requires only that limiting function agrees 
with cdf at its points of continuity.

( ) ( )lim nn
F y F y

→∞
=
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EXAMPLES

1. Let {Xn} be a sequence of rvs with pmf

( ) ( )
11, if 2  

0, o.w.
n

x
f x P X x n

⎧ = +⎪= = = ⎨
⎪⎩

Find the limiting distribution of Xn.
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EXAMPLES

2. Let Xn have the pmf

( ) 1 if .nf x x n= =

Find the limiting distribution of Xn.
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EXAMPLES

3. Let Xn ~ N(μ, σ2) be a sequence of Normal 
rvs. Let        be the sample mean. Find the 
limiting distribution of     .

nX
nX
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CONVERGENCE IN PROBABILITY 
(STOCHASTIC CONVERGENCE)

• A rv Yn convergence in probability to a rv Y if

( )lim 1nn
P Y Y

→∞
− < =ε

for every ε>0.
Special case: Y=c where c is a constant 
not depending on n.

The limiting distribution of Yn is 
degenerate at point c.
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CHEBYSHEV’S INEQUALITY

• Let X be an rv with E(X)=μ and V(X)=σ2.

( )
2

21 , 0P X − < ≥ − >
σμ ε ε
ε

• The Chebyshev’s Inequality can be 
used to prove stochastic convergence in 
many cases.



9

CONVERGENCE IN PROBABILITY 
(STOCHASTIC CONVERGENCE)

• The Chebyshev’s Inequality proves the 
convergence in probability if the following 
three conditions are satisfied.

( ) 22.  for all .n nV Y n= < ∞σ

1. E(Yn)=μn where lim .nn→∞
=μ μ

23. lim 0.nn→∞
=σ
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EXAMPLES

1. Let X be an rv with E(X)=μ and V(X)=σ2<∞.
For a r.s. of size n,       is the sample mean. 
Is

nX
?

p

nX →μ
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EXAMPLES

• Let Zn be   2 2and let / .n n nW Z n=χ
Show that the limiting distribution of Wn is 
degenerate at 0. 
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WEAK LAW OF LARGE 
NUMBERS

• Let X1, X2,…,Xn be iid rvs with E(Xi)=μ and 
V(Xi)=σ2<∞. Define                      . Then, for 
every ε>0, 1

1/
n

n i
i

X n X
=

= ∑

( )lim 1,nn
P X

→∞
− < =μ ε

that is,        converges in probability to μ.nX
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STRONG LAW OF LARGE 
NUMBERS

• Let X1, X2,…,Xn be iid rvs with E(Xi)=μ and 
V(Xi)=σ2<∞. Define                    . Then, for 
every ε>0, 1

1/
n

n i
i

X n X
=

= ∑

( )lim 1nn
P X

→∞
− < =μ ε

that is,        converges almost sure to μ.nX
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LIMITING MOMENT 
GENERATING FUNCTIONS

• Let rv Yn have an mgf Mn(t) that exists for 
all n. If

( ) ( )lim ,nn
M t M t

→∞
=

then Yn has a limiting distribution which is 
defined by M(t).
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EXAMPLES

1. Let Xn~ Gamma(n, β) where β does not 
depend on n. Let Yn=Xn/n. Find the limiting 
distribution of Yn.
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EXAMPLES

2. Let Xn~ Exp(1) and       be the sample 
mean of r.s. of size n. Find the limiting 
distribution of 

nX

( )1 .n nY n X= −
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THE CENTRAL LIMIT THEOREM

• Let X1, X2,…,Xn be a sequence of iid rvs 
whose mgf exist in a neighborhood of 0. 
Let E(Xi)=μ and V(Xi)=σ2>0. Define                  

. Then,
1

1/
n

n i
i

X n X
=

= ∑
( ) ( )0,1

dnn X
Z N

−
= →

μ
σ

or

( )1 0,1 .

n

i d
i

X n
Z N

n
=

−
= →
∑ μ

σ
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EXAMPLES

1. Let Xn~ Exp(1) and       be the sample 
mean of r.s. of size n. Find the limiting 
distribution of 

nX

( )1 .n nY n X= −
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EXAMPLES

2. Let      be the sample mean from a r.s. of 
size n=100 from       . Compute approximate 
value of 

nX
2
50χ

( )49 51 .P X< <
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SLUTKY’S THEOREM

• If Xn→X in distribution and Yn→a, a 
constant, in probability, then

a) YnXn→aX in distribution.

b) Xn+Yn→X+a in distribution.



21

SOME THEOREMS ON LIMITING 
DISTRIBUTIONS

• If Xn→c>0 in probability, 

.
p

nX c→

• If Xn→c in probability and Yn→c in probability, 
then

• aXn+bYn →ac+bd in probability.

• XnYn →cd in probability

• 1/Xn →1/c in probability for all c≠0.
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EXAMPLES

1. X~Gamma(μ, 1). Show that

( ) ( )0,1.
dn

n

n X
N

X

−
→

μ
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EXAMPLES

• X~Gamma(1,n). Let

n
n

X nZ
n
−

=

Let Zn→N(0,1) in distribution and Yn→c in 
probability. Find the limiting distribution 
of the following

a)Wn=YnZn.
b)Un=Zn/n.
c)Vn=Zn+Yn.
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ORDER STATISTICS

• Let X1, X2,…,Xn be a r.s. of size n from a 
distribution of continuous type having pdf 
f(x), a<x<b. Let X(1) be the smallest of Xi, 
X(2) be the second smallest of Xi,…, and 
X(n) be the largest of Xi.

( ) ( ) ( )1 2 na X X X b< ≤ ≤ ≤ <L

• X(i) is the i-th order statistic.

( ) { }

( ) { }
1 21

1 2

min , , ,

max , , ,
n

nn

X X X X

X X X X

=

=

L

L
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ORDER STATISTICS

• If X1, X2,…,Xn be a r.s. of size n from a 
population with continuous pdf f(x), then 
the joint pdf of the order statistics 
X(1), X(2),…,X(n) is

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )1 2 1 2, , , !n ng x x x n f x f x f x=L L
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ORDER STATISTICS

• The Maximum Order Statistic: X(n)

( )
( ) ( )( )nX nG y P X y= ≤

( )
( )

( )
( )

n nX Xg y G y
y
∂

=
∂
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ORDER STATISTICS

• The Minimum Order Statistic: X(1)

( )
( ) ( )( )1 1XG y P X y= ≤

( )
( )

( )
( )

1 1X Xg y G y
y
∂

=
∂
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ORDER STATISTICS

• k-th Order Statistic

y
y1 y2 yk-1 yk yk+1 yn… …

P(X<yk) P(X>yk)

fX(yk)

# of possible orderings
n!/{(k−1)!1!(n − k)!}

( )( ) ( ) ( ) ( ) ( ) ( )1! 1 ,
1 ! !k

k n k
X X XX y

ng F y f y F y a y b
k n k

− −
⎡ ⎤ ⎡ ⎤= − < <⎣ ⎦ ⎣ ⎦− −
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EXAMPLE

• X~Uniform(0,θ). A r.s. of size n is taken. X(n)
is the largest order statistic. Then,

a) Find the limiting distribution of X(n).

b) Find the limiting distribution of Zn=n(θ−X(n)).
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