LIMITING DISTRIBUTIONS

CONVERGENCE IN DISTRIBUTION

 Consider that X₁, X₂,..., X_n is a sequence of rvs and Y_n=u(X₁, X₂,..., X_n) be a function of rvs with cdfs F_n(y) so that for each n=1, 2,...

$$F_n(y) = P(Y_n \leq y),$$

$$\lim_{n\to\infty} F_n(y) = F(y) \text{ for all } y$$

where F(y) is continuous. Then, the sequence $X_1, X_2, ..., X_n$ is said to converge in distribution.

CONVERGENCE IN DISTRIBUTION

• Theorem: If $\lim_{n\to\infty} F_n(y) = F(y)$ for every point y at which F(y) is continuous, then Y_n is said to have a limiting distribution with cdf F(y).

 Definition of convergence in distribution requires only that limiting function agrees with cdf at <u>its points of continuity</u>.

1. Let $\{X_n\}$ be a sequence of rvs with pmf $f_n(x) = P(X = x) = \begin{cases} 1, \text{ if } x = 2 + \frac{1}{n} \\ 0, \text{ o.w.} \end{cases}$

Find the limiting distribution of X_n .

- 2. Let X_n have the pmf $f_n(x) = 1$ if x = n.
 - Find the limiting distribution of X_n .

3. Let $X_n \sim N(\mu, \sigma^2)$ be a sequence of Normal rvs. Let \overline{X}_n be the sample mean. Find the limiting distribution of \overline{X}_n .

CONVERGENCE IN PROBABILITY (STOCHASTIC CONVERGENCE)

• A rv Y_n convergence in probability to a rv Y if $\lim_{n \to \infty} P(|Y_n - Y| < \varepsilon) = 1$

for every $\varepsilon > 0$. **Special case:** Y = c where *c* is a constant not depending on *n*.

The limiting distribution of Y_n is degenerate at point c.

CHEBYSHEV'S INEQUALITY

• Let X be an rv with $E(X) = \mu$ and $V(X) = \sigma^2$.

$$P(|X-\mu| < \varepsilon) \ge 1 - \frac{\sigma^2}{\varepsilon^2}, \varepsilon > 0$$

• The Chebyshev's Inequality can be used to prove stochastic convergence in many cases.

CONVERGENCE IN PROBABILITY (STOCHASTIC CONVERGENCE)

• The Chebyshev's Inequality proves the convergence in probability if the following three conditions are satisfied.

1.
$$E(Y_n) = \mu_n$$
 where $\lim_{n \to \infty} \mu_n = \mu$.

2.
$$V(Y_n) = \sigma_n^2 < \infty$$
 for all n .

3.
$$\lim_{n\to\infty}\sigma_n^2=0.$$

1. Let *X* be an rv with $E(X) = \mu$ and $V(X) = \sigma^2 < \infty$. For a r.s. of size *n*, \overline{X}_n is the sample mean. Is $\overline{X}_n \xrightarrow{p} \mu$?

• Let Z_n be χ_n^2 and let $W_n = Z_n / n^2$.

Show that the limiting distribution of W_n is degenerate at 0.

WEAK LAW OF LARGE NUMBERS

• Let $X_1, X_2, ..., X_n$ be iid rvs with $E(X_i) = \mu$ and $V(X_i) = \sigma^2 < \infty$. Define $\overline{X}_n = 1/n \sum_{i=1}^n X_i$. Then, for every $\varepsilon > 0$,

$$\lim_{n\to\infty} P(|\overline{X}_n - \mu < \varepsilon|) = 1,$$

that is, \overline{X}_n converges in probability to μ .

STRONG LAW OF LARGE NUMBERS

• Let $X_1, X_2, ..., X_n$ be iid rvs with $E(X_i) = \mu$ and $V(X_i) = \sigma^2 < \infty$. Define $\overline{X}_n = 1/n \sum_{i=1}^n X_i$. Then, for every $\varepsilon > 0$,

$$P\left(\lim_{n\to\infty}\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1$$

that is, \overline{X}_{n} converges almost sure to μ .

LIMITING MOMENT GENERATING FUNCTIONS

• Let $rv Y_n$ have an mgf $M_n(t)$ that exists for all n. If

$$\lim_{n\to\infty}M_n(t)=M(t),$$

then Y_n has a limiting distribution which is defined by M(t).

1. Let $X_n \sim Gamma(n, \beta)$ where β does not depend on *n*. Let $Y_n = X_n/n$. Find the limiting distribution of Y_n .

2. Let $X_n \sim Exp(1)$ and \overline{X}_n be the sample mean of r.s. of size *n*. Find the limiting distribution of

$$Y_n = \sqrt{n} \left(\overline{X}_n - 1 \right).$$

THE CENTRAL LIMIT THEOREM

• Let $X_1, X_2, ..., X_n$ be a sequence of iid rvs whose mgf exist in a neighborhood of 0. Let $E(X_i) = \mu$ and $V(X_i) = \sigma^2 > 0$. Define $\overline{X}_n = 1/n \sum_{i=1}^n X_i$. Then, $Z = \frac{\sqrt{n} (\overline{X}_n - \mu)}{\sigma} \stackrel{d}{\to} N(0, 1)$

or

$$Z = \frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n\sigma}} \xrightarrow{d} N(0,1).$$

17

1. Let $X_n \sim Exp(1)$ and \overline{X}_n be the sample mean of r.s. of size n. Find the limiting distribution of

$$Y_n = \sqrt{n} \left(\overline{X}_n - 1 \right).$$

2. Let \overline{X}_n be the sample mean from a r.s. of size n=100 from χ^2_{50} . Compute approximate value of $P(49 < \overline{X} < 51)$.

SLUTKY'S THEOREM

• If $X_n \rightarrow X$ in distribution and $Y_n \rightarrow a$, a constant, in probability, then

a) $Y_n X_n \rightarrow aX$ in distribution.

b) $X_n + Y_n \rightarrow X + a$ in distribution.

SOME THEOREMS ON LIMITING DISTRIBUTIONS

• If $X_n \rightarrow c > 0$ in probability,

$$\sqrt{X_n} \xrightarrow{p} \sqrt{c}.$$

- If $X_n \rightarrow c$ in probability and $Y_n \rightarrow c$ in probability, then
 - $aX_n + bY_n \rightarrow ac + bd$ in probability.
 - $X_n Y_n \rightarrow cd$ in probability
 - $1/X_n \rightarrow 1/c$ in probability for all $c \neq 0$.

1. *X*~*Gamma*(μ , 1). Show that

$$\frac{\sqrt{n}\left(\overline{X}_{n}-\mu\right)}{\sqrt{\overline{X}_{n}}}^{d} \rightarrow N(0,1.)$$

• *X~Gamma*(*1*,*n*). Let

$$Z_n = \frac{X_n - n}{\sqrt{n}}$$

Let $Z_n \rightarrow N(0,1)$ in distribution and $Y_n \rightarrow c$ in probability. Find the limiting distribution of the following

$$a)W_n = Y_n Z_n.$$

$$b)U_n = Z_n/n.$$

$$c)V_n = Z_n + Y_n.$$

Let X₁, X₂,...,X_n be a r.s. of size n from a distribution of continuous type having pdf f(x), a<x<b. Let X₍₁₎ be the smallest of X_i, X₍₂₎ be the second smallest of X_i,..., and X_(n) be the largest of X_i.

$$a < X_{(1)} \le X_{(2)} \le \dots \le X_{(n)} < b$$

• $X_{(i)}$ is the *i*-th order statistic.

$$X_{(1)} = \min\{X_1, X_2, \dots, X_n\}$$

$$X_{(n)} = \max\{X_1, X_2, \dots, X_n\}$$
24

If X₁, X₂,...,X_n be a r.s. of size n from a population with continuous pdf f(x), then the joint pdf of the order statistics

$$X_{(1)}, X_{(2)}, \dots, X_{(n)} \text{ is}$$

$$g\left(x_{(1)}, x_{(2)}, \dots, x_{(n)}\right) = n! f\left(x_{(1)}\right) f\left(x_{(2)}\right) \dots f\left(x_{(n)}\right)$$

• The Maximum Order Statistic: $X_{(n)}$

$$G_{X_{(n)}}(y) = P(X_{(n)} \le y)$$

$$g_{X_{(n)}}(y) = \frac{\partial}{\partial y} G_{X_{(n)}}(y)$$

• The Minimum Order Statistic: $X_{(1)}$

$$G_{X_{(1)}}(y) = P(X_{(1)} \le y)$$

$$g_{X_{(1)}}(y) = \frac{\partial}{\partial y} G_{X_{(1)}}(y)$$

• *k*-th Order Statistic

$$g_{X_{(k)}(y)} = \frac{n!}{(k-1)!(n-k)!} \left[F_X(y) \right]^{k-1} f_X(y) \left[1 - F_X(y) \right]^{n-k}, a < y < b$$

- X~Uniform(0, θ). A r.s. of size n is taken. X_(n) is the largest order statistic. Then,
- a) Find the limiting distribution of $X_{(n)}$.
- b) Find the limiting distribution of $Z_n = n(\theta X_{(n)})$.